精英家教网 > 高中数学 > 题目详情
已知函数,f(x)=
log3x   x>0
2-x       x≤0
,若f(f(-3))∈[k,k+1),k∈Z,则k=
 
,当f(x)=1时,x=
 
分析:由已知中分段函数的解析式,f(x)=
log3x   x>0
2-x       x≤0
,我们将x=-3代入可求出f(-3),再代入f(f(-3)),根据对数的性质,易得到f(f(-3))的范围,进而得到k值,分别讨论两种情况下f(x)=1时,x的值,并根据对应x的取值范围进行检验,即可得到答案.
解答:解:∵f(x)=
log3x   x>0
2-x       x≤0

∴f(f(-3))=f(8)=log38
又∵log33<log38<log39
∴1<log38<2
故若f(f(-3))∈[k,k+1),k∈Z,k=1
若log3x=1,则x=3,满足要求;
若2-x=1,则x=0,不满足要求;
故当f(x)=1时,x=3
故答案为:1,3
点评:本题考查的知识点是分段函数的函数值,及分段函数给值求值问题,分段函数分段处理,是解答此类问题常用的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x+
1
2
)
为奇函数,设g(x)=f(x)+1,则g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=(  )
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数,f(x)=Acos2(ωx+φ)+1(A>0,ω>0,0<φ<
π2
)
的最大值为3,f(x)的图象的相邻两对称轴间的距离为2,在y轴上的截距为2.
(I)求函数f(x)的解析式;
(Ⅱ)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•枣庄二模)已知函数y=
f(x),x>0
g(x),x<0
是偶函数,f(x)=logax的图象过点(2,1),则y=g(x)对应的图象大致是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
f(x)
ex
(x∈R)
满足f′(x)>f(x),则f(1)与ef(0)的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x+
1
2
)-
1
2
是定义域为实数集R的奇函数,则f(
1
2011
)+f(
2
2011
)+f(
3
2011
)+…+f(
2010
2011
)
的值为
1005
1005

查看答案和解析>>

同步练习册答案