精英家教网 > 高中数学 > 题目详情

设三角形ABC的内角所对的边长分别为,,且.
(Ⅰ)求角的大小;
(Ⅱ)若AC=BC,且边上的中线的长为,求的面积.

(Ⅰ)A=;(Ⅱ)

解析试题分析:(Ⅰ)由可得通过三角运算即sin(A+C)=sinB.可求得角A的值.
(Ⅱ)由角A=.可求得C=.又因为AC=2CM.即AM= .在三角形AMC中可求得AC的长.再用三角形面积公式即可求得三角形的面积.本题是利用向量垂直知识来求得角A.再根据等腰三角形的内角关系,利用余弦定理求得三角形的面积.
试题解析:(1)由 
                 1分
所以         2分

则2sinBcosA=sinB                    4分
所以cosA=于是A=                 6分
(2)由(1)知A=,又AC=BC,所以C=      7分
设AC=x,则MC=,AM=,在中,由余弦定理得
           9分

解得x=2                          11分
                13分
考点:1.向量的垂直坐标形式的表示.2.余弦定理.3.三角恒等变换.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

中,角A,B,C所对边分别为a,b,c,且向量,,满足
(1)求角C的大小;
(2)若成等差数列,且,求边的长

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,分别为角所对的边,角C是锐角,且
(1)求角的值;
(2)若的面积为,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 的内角A、B、C所对的边为, ,且所成角为.
(Ⅰ)求角B的大小
(Ⅱ)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)已知内角的对边分别为,且,若向量共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ABC中,内角A,B,C的对边分别为a,b,c.
已知.
(Ⅰ)求的值;  (Ⅱ)若,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设△的内角所对边的长分别为,且有

(Ⅰ)求角A的大小;
(Ⅱ)若的中点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C所对的边为a,b,c,已知 a=2bsinA,
(1)求B的值;
(2)若△ABC的面积为,求a,b的值.

查看答案和解析>>

同步练习册答案