【题目】选修4-5:不等式选讲
已知函数.
(1)若,求不等式的解集;
(2)若时,恒成立,求的取值范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆,为左、右焦点,直线过交椭圆于,两点.
(1)若垂直于轴时,求;
(2)当时,在轴上方时,求,的坐标;
(3)若直线交轴于,直线交轴于,是否存在直线,使,若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季取暖时减少能源消耗,业主决定对房屋的屋顶和外墙喷涂某种新型隔热材料,该材料有效使用年限为20年.已知房屋外表喷一层这种隔热材料的费用为每毫米厚6万元,且每年的能源消耗费用(万元)与隔热层厚度(毫米)满足关系:.设为隔热层建造费用与年的能源消耗费用之和.
(1)请解释的实际意义,并求的表达式;
(2)当隔热层喷涂厚度为多少毫米时,业主所付的总费用最少?并求此时与不建隔热层相比较,业主可节省多少钱?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次招聘分为笔试和面试两个环节,且只有笔试过关者方可进入面试环节,笔试与面试都过关才会被录用.笔试需考完全部三科,且至少有两科优秀才算笔试过关,面试需考完全部两科且两科均为优秀才算面试过关.假设某考生笔试三科每科优秀的概率均为,面试两科每科优秀的概率均为.
(1)求该考生被录用的概率;
(2)设该考生在此次招聘活动中考试的科目总数为,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,用种不同的颜色给图中的个格子涂色,每个格子涂一种颜色,要求最多使用种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有( )
A.种B.种C.种D.种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:1(a>b>0),椭圆C上的点到焦点距离的最大值为9,最小值为1.
(1)求椭圆C的标准方程;
(2)求椭圆C上的点到直线l:4x﹣5y+40=0的最小距离?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com