【题目】已知函数.
(1)判断函数在上的单调性,并证明;
(2)若恒成立,求的最小值;
(3)记,求集合中正整数的个数;
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,若函数在,()处导数相等,证明:;
(2)是否存在,使直线是曲线的切线,也是曲线的切线,而且这样的直线是唯一的,如果存在,求出直线方程,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线:(,)的左、右焦点分别为,,过点且斜率为的直线交双曲线于,两点,线段的垂直平分线恰过点,则该双曲线的离心率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点
(1)求椭圆的方程;
(2)设不过原点的直线与该椭圆交于两点,满足直线的斜率依次成等比数列,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体中,E,F分别为线段CD和上的动点,且满足,则四边形所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和( )
A. 有最小值B. 有最大值C. 为定值3D. 为定值2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,一个长轴顶点在直线上,若直线与椭圆交于,两点,为坐标原点,直线的斜率为,直线的斜率为.
(1)求该椭圆的方程.
(2)若,试问的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点为,左右顶点分别为.经过点的直线与椭圆交于两点.
(1)求椭圆方程及离心率.
(2)当直线的倾斜角为时,求线段的长;
(3)记的面积分别为和,求最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为F,点B是椭圆C的短轴的一个端点,ΔOFB的面积为,椭圆C上的两点H、G关于原点O对称,且、的等差中项为2
(1)求椭圆的方程;
(2)是否存在过点M(2,1)的直线与椭圆C交于不同的两点P、Q,且使得成立?若存在,试求出直线的方程;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;
(2)设点的极坐标为,点在曲线上,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com