精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为的奇函数的图像是一条连续不断的曲线,当时,;当时,,且,则关于的不等式的解集为(

A. B. C. D.

【答案】A

【解析】根据奇函数的图象关于原点对称,通过已知条件知道:函数f(x)(∞,1),(1,+∞)上单调递减;[1,1]上单调递增;

f(0)=0,f(2)=f(2)=0;

∴若1<x<1时:x+1>0,∴由原不等式得f(x)>0=f(0),根据函数f(x)(1,1)上单调递增得0<x<1;

x1,x+1>0,∴由原不等式得f(x)>0=f(2),根据函数f(x)[1,+∞)上单调递减得1x<2;

x<1,x+1<0,∴由原不等式得f(x)<0=f(2),根据函数f(x)(∞,1)上单调递减得2<x<1;

∴原不等式的解集为:(0,2)(2,1).

本题选择A选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线在点处的切线方程;

(2)若函数在其定义域内为增函数,求的取值范围;

(3)在(2)的条件下,设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)写出曲线的直角坐标方程;

(2)已知点的直角坐标为,直线与曲线相交于不同的两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2+2x.
(Ⅰ)求f(0)的值;
(Ⅱ)求此函数在R上的解析式;
(Ⅲ)若对任意的t∈R,不等式f(t+1)+f(m﹣2t2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个正数a,b满足a+b=1
(1)求证:
(2)若不等式 对任意正数a,b都成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)在R上可导且满足不等式xf′(x)+f(x)>0恒成立,且常数a,b满足a>b,则下列不等式一定成立的是(
A.af(a)>bf(b)
B.af(b)>bf(a)
C.af(a)<bf(b)
D.af(b)<bf(a)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的奇函数的图像是一条连续不断的曲线,当时,;当时,,且,则关于的不等式的解集为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣mx+m﹣1=0}若A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线E:y2=4x的焦点为F,准线lx轴的交点为A.点C在抛物线E上,以C为圆心, |CO| 为半径作圆,设圆C与准线l交于不同的两点M,N.

(1)若点C的纵坐标为2,求|MN| .
(2)若|AF|2=|AM|·|AN| ,求圆C的半径.

查看答案和解析>>

同步练习册答案