精英家教网 > 高中数学 > 题目详情

【题目】如图,在四边形中,,以为折痕把折起,使点到达点的位置,且.

1)证明:平面

2)若的中点,二面角等于60°,求直线与平面所成角的正弦值.

【答案】1)证明见解析(2

【解析】

1)利用线面垂直的判定定理和性质定理即可证明;

2)由题意知,,取的中点,连接,易知两两垂直,以为原点建立如图所示的坐标系,设,平面的一个法向量为,求出向量,则向量所成角的余弦值的绝对值即为所求.

1)证明:因为

所以平面

又因为平面,所以.

又因为

所以平面.

2)因为

所以是二面角的平面角,即

中,

的中点,连接,因为,

所以,由(1)知,平面的中位线,

所以,即两两垂直,

为原点建立如图所示的坐标系,设,则

,设平面的一个法向量为

则由,得

所以

所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数),是函数的一个极值点.

1)求函数的单调递增区间;

2)设,若,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.的必要不充分条件

B.为真命题为真命题的必要不充分条件

C.命题的否定是:使得

D.命题p,则是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,点轴上,点轴上,且,当点轴上运动时,动点的轨迹为曲线.过轴上一点的直线交曲线两点.

1)求曲线的轨迹方程;

2)证明:存在唯一的一点,使得为常数,并确定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年是打赢蓝天保卫战三年行动计划的決胜之年,近年来,在各地各部门共同努力下,蓝天保卫战各项任务措施稳步推进,取得了积极成效,某学生随机收集了甲城市近两年上半年中各天的空气量指数,得到频数分布表如下:

年上半年中天的频数分布表

的分组

天数

年上半年中天的频数分布表

的分组

天数

1)估计年上半年甲城市空气质量优良天数的比例;

2)求年上半年甲城市的平均数和标准差的估计值(同一组中的数据用该组区间的中点值为代表);(精确到

3)用所学的統计知识,比较年上半年与年上半年甲城市的空气质量情况.

附:

的分组

空气质量

轻度污染

中度污染

重度污染

严重污染

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy上取两个定点A10),A20),再取两个动点N10m),N20n),且mn2.

1)求直线A1N1A2N2交点M的轨迹C的方程;

2)过R30)的直线与轨迹C交于PQ,过PPNx轴且与轨迹C交于另一点NF为轨迹C的右焦点,若λ1),求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个笼子里关着只猫,其中有只白猫,只黑猫.把笼门打开一个小口,使得每次只能钻出只猫.猫争先恐后地往外钻.如果只猫都钻出了笼子,以表示只白猫被只黑猫所隔成的段数.例如,在出笼顺序为“□■□□□□■□□■”中,则

1)求三只黑猫挨在一起出笼的概率;

2)求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过去五年,我国的扶贫工作进入了“精准扶贫”阶段.目前“精准扶贫”覆盖了全部贫困人口,东部帮西部,全国一盘棋的扶贫格局逐渐形成.2020年底全国830个贫困县都将脱贫摘帽,最后4335万贫困人口将全部脱贫,这将超过全球其他国家过去30年脱贫人口总和.2020年是我国打赢脱贫攻坚战收官之年,越是到关键时刻,更应该强调“精准”.为落实“精准扶贫”政策,某扶贫小组,为一“对点帮扶”农户引种了一种新的经济农作物,并指导该农户于2020年初开始种植.已知该经济农作物每年每亩的种植成本为1000元,根据前期各方面调查发现,该经济农作物的市场价格和亩产量均具有随机性,且两者互不影响,其具体情况如下表:

该经济农作物亩产量(kg)

该经济农作物市场价格(/kg)

概率

概率

1)设2020年该农户种植该经济农作物一亩的纯收入为X元,求X的分布列;

2)若该农户从2020年开始,连续三年种植该经济农作物,假设三年内各方面条件基本不变,求这三年中该农户种植该经济农作物一亩至少有两年的纯收入不少于16000元的概率;

32020年全国脱贫标准约为人均纯收入4000.假设该农户是一个四口之家,且该农户在2020年的家庭所有支出与其他收入正好相抵,能否凭这一亩经济农作物的纯收入,预测该农户在2020年底可以脱贫?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为正方形,且平面平面,点为棱的中点.

1)在棱上是否存在一点,使得平面?并说明理由;

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案