精英家教网 > 高中数学 > 题目详情
13.某四面体的三视图如图所示,则该四面体的体积为(  )
A.4$\sqrt{3}$B.$\frac{4\sqrt{3}}{3}$C.8$\sqrt{3}$D.$\frac{8\sqrt{3}}{3}$

分析 依据三视图的数据,求出几何体的体积.

解答 解:三视图复原的几何体是以俯视图为底面,高为2的三棱锥,
所以三棱锥的体积为:$\frac{1}{3}×\frac{1}{2}×2×2\sqrt{3}×2$=$\frac{4\sqrt{3}}{3}$.
故选B

点评 本题是基础题,考查三视图的视图能力,计算能力,空间想象能力,常考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连结DB并延长交⊙O于点E,已知AC=BD=3.
(Ⅰ)求AB•AD的值;
(Ⅱ)求线段AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.与极坐标(-2,$\frac{π}{6}}$)不表示同一点的极坐标是(  )
A.(2,$\frac{7}{6}π}$)B.(2,-$\frac{7}{6}π}$)C.(-2,-$\frac{11π}{6}}$)D.(-2,$\frac{13}{6}π}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x-ln(x+1)+$\frac{a-1}{a}$.
(Ⅰ)若关于x的不等式f(x)≤0有实数解,求实数a的取值范围;
(Ⅱ)若m>n>0,求证:em-n-1>ln(m+1)-ln(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足an+1=3an+2,n∈N*,a1=2,bn=an+1
(1)证明数列{bn}为等比数列.
(2)求数列{an}的通项公式an与其前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果ξ~B(n,p),其中0<p<1,那么使P(ξ=k)取最大值的k 值(  )
A.有且只有一个B.有且只有两个
C.不一定有D.当(n+1)p为整数时有两个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点P(1,1)是直线l被椭圆$\frac{x^2}{4}$+$\frac{y^2}{2}$=1所截得的线段的中点,则直线l的方程为x+2y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.曲线极坐标方程ρ=2cos 2θ,该曲线与坐标轴的交点个数是3个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=-$\frac{1}{3}$x3+bx2+cx+bc.
(Ⅰ)若函数f(x)在x=1处有极值-$\frac{4}{3}$,试确定b、c的值;
(Ⅱ)若b=1,f(x)存在单调递增区间,求c的取值范围.

查看答案和解析>>

同步练习册答案