精英家教网 > 高中数学 > 题目详情

【题目】某鲜花小镇圈定一块半径为1百米的圆形荒地,准备建成各种不同鲜花景观带.为了便于游客观赏,准备修建三条道路ABBCCA,其中ABC分别为圆上的三个进出口,且AB分别在圆心O的正东方向与正北方向上,C在圆心O南偏西某一方向上.在道路ACBC之间修建一条直线型水渠MN种植水生观赏植物黄鸢尾(其中点MN分别在BCCA上,且M在圆心O的正西方向上,N在圆心O的正南方向上),并在区域MNC内种植柳叶马鞭草.

(1)求水渠MN长度的最小值;

(2)求种植柳叶马鞭草区域MNC面积的最大值(水渠宽度忽略不计).

【答案】(1)百米;(2)平方米.

【解析】

1)设可表示出直线的方程,从而求得两点坐标,进而将表示为关于的函数,利用导数求得最值;(2)方法一:将表示为,利用将面积表示出来,利用进行换元,从而化简得:,再根据的范围求得面积最大值;方法二:利用三角形面积公式,直接用表示出,再利用换元,也可得到,从而与方法一采用相同的求最大值方法求值.

【解】(1)以圆心为原点,建立平面直角坐标系,则圆的方程为

设点

直线的方程为,令,得

直线的方程为,令,得

所以

,得

时,,则单调递减;

时,,则单调递增;

所以当时,

所以

水渠长度的最小值为百米

(2)由(1)可知,,且

,因为,所以

所以

所以当时,

种植柳叶马鞭草区域面积的最大值为平方百米

另法:(2)因为,所以

所以

,因为,所以

所以

所以当时,

种植柳叶马鞭草区域面积的最大值为平方百米

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在圆心角为直角的扇形OAB区域中,MN分别为OAOB的中点,在MN两点处各有一个通信基站,其信号的覆盖范围分别为以OAOB为直径的圆,在扇形OAB内随机取一点,则此点无信号的概率是 

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的个数是( )

①相关系数用来衡量两个变量之间线性关系的强弱,越接近于1,相关性越弱;

②回归直线过样本点中心

③相关指数用来刻画回归的效果,越小,说明模型的拟合效果越不好.

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形的边长为米,圆的半径为米,圆心是正方形的中心,点分别在线段上,若线段与圆有公共点,则称点在点的“盲区”中,已知点/秒的速度从出发向移动,同时,点/秒的速度从出发向移动,则在点移动到的过程中,点在点的盲区中的时长约________秒(精确到).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,.

(1)求证:

(2)若的中点.

(i)过点作一直线平行,在图中画出直线并说明理由;

(ii)求平面将三棱锥分成的两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,且左焦点F1到左准线的距离为4.

(1)求椭圆的方程;

(2)若与原点距离为1的直线l1与椭圆相交于AB两点,直线l2l1平行,且与椭圆相切于点MOM位于直线l1的两侧).记△MAB,△OAB的面积分别为S1S2,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,在正方体中,点分别为棱的中点,点为上底面的中心,过三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连接的任一点,设与平面所成角为,则的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为,且椭圆短轴的一个顶点到一个焦点的距离等于.

(1)求椭圆的方程;

(2)设经过点的直线交椭圆两点,点.

①若对任意直线总存在点,使得,求实数的取值范围;

②设点为椭圆的左焦点,若点的外心,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某校学生每周课外阅读的情况,采用分层抽样的方法,收集100位学生每周课外阅读时间的样本数据(单位:小时).根据这100个数据,制作出学生每周课外阅读时间的频率分布直方图(如图).

(1)估计这100名学生每周课外阅读的平均数和样本方差(同一组数据用该组区间的中点值作代表);

(2)由频率分布直方图知,该校学生每周课外阅读时间近似服从正态分布,其中近似为样本平均数近似为样本方差.

①求

②若该校共有10000名学生,记每周课外阅读时间在区间的人数为,试求.

参数数据:,若.

查看答案和解析>>

同步练习册答案