精英家教网 > 高中数学 > 题目详情
已知p:方程
x2
k+1
+
y2
2-2k
=1
表示焦点在y轴上的椭圆; q:直线y-1=k(x+2)与抛物线y2=4x有两个公共点.若“p∨q”为真,“p∧q”为假,求k的取值范围.
分析:根据方程表示焦点在y轴的椭圆,可得x2、y2的分母均为正数,且y2的分母较大,由此建立关于k的不等式,解之即得k的取值范围.再把直线方程代入抛物线方程消去x,求得方程得判别式,分别根据判别式大于0,求得k的范围.由复合命题的真值表,结合p∨q为真,p∧q为假,可得p和q一真一假,分类讨论后可得k的取值范围.
解答:解:∵方程
x2
k+1
+
y2
2-2k
=1
,表示焦点在y轴的椭圆,
∴2-2k>1+k>0,解不等式得-1<k<
1
3

故若p为真命题,则:-1<k<
1
3

y-1=k(x+2)
y2=4x
消去x得
k
4
y2-y+2k+1=0
△=4-k(2k+1)>0,即-1<k<0或0<k<
1
2

-1<k<0或0<k<
1
2
时,直线与抛物线有二个公共点;
若q为真命题,则:-1<k<0或0<k<
1
2

又p∨q为真,p∧q为假,所以p和q一真一假.
即p为真,q为假;或p为假,q为真.
∴得k=0或-
1
3
<k<
1
2

∴k的取值范围是k=0或-
1
3
<k<
1
2
点评:本题考查含有字母参数的方程表示椭圆,直线与圆锥曲线的关系问题,复合命题的真假判断.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:方程
x2
k-4
+
y2
k-6
=1
表示双曲线,q:过点M(2,1)的直线与椭圆
x2
5
+
y2
k
=1
恒有公共点,若p∧q为真命题,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:方程
x2
k-1
+
y2
k-3
=1
表示双曲线,q:不等式kx2-x+
k
16
>0
对一切x∈R恒成立,若p∧q为真命题,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:0<k<2,q:方程
x2
k-1
+
y2
k-3
=1
表示双曲线,若p∧q为真命题,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知p:方程
x2
k-1
+
y2
k-3
=1
表示双曲线,q:不等式kx2-x+
k
16
>0
对一切x∈R恒成立,若p∧q为真命题,求k的取值范围.

查看答案和解析>>

同步练习册答案