精英家教网 > 高中数学 > 题目详情
14.若函数y=f(x)的值域为[-1,1],则y=f(x+1)的值域为[-1,1],;y=f(x2+1)+2的值域为[1,3].

分析 由题意和函数值域的特点可得.

解答 解:∵函数y=f(x)的值域为[-1,1],
∴y=f(x+1)的值域为[-1,1];
∴y=f(x2+1)+2的值域为[1,3],
故答案为:[-1,1];[1,3]

点评 本题考查函数的值域,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.解不等式:$\frac{x+3}{{x}^{2}-x+1}$≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2+bx+c,满足f(-1)=0,且x≤f(x)≤($\frac{x+1}{2}$)2恒成立,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设全集U=R,A={x|0≤x≤3},则∁UA={x|x>3或x<0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的通项为an=2n-1,数列{bn}为:a1+a2+a3,a2+a3+a4,…,an+an+1+an+2,则数列{bn}的前n项和Tn=3n2+6n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的值域:
(1)y=$\frac{1-{x}^{2}}{1+{x}^{2}}$;
(2)y=x+$\frac{1}{x}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数y=-x2+6x-3,若函数在[a,b](a<b)上的取值范围是[2a,2b],求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设各项均为正数的等比数列{an}的公比为q,[an]表示不超过实数an的最大整数(如[1.2]=1),设bn=[an],数列{bn}的前n项和为Tn,{an}的前n项和为Sn
(1)若a1=4,q=$\frac{1}{2}$,求Sn及Tn
(2)若对于任意不超过2015的正整数n,都有Tn=2n+1,证明:($\frac{2}{3}$)${\;}^{\frac{1}{2013}}$<q<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.平面直角坐标系xOy中,P是不在x轴上一个动点,满足条件:过P可作抛物线y2=4x的两条切线,两切点连线lP与PO垂直,设直线lP与PO,x轴的交点分别为Q,R.
(1)证明:R是一个定点;
(2)求$\frac{|PQ|}{|QR|}$的最小值.

查看答案和解析>>

同步练习册答案