精英家教网 > 高中数学 > 题目详情
设定义在R上的函数f(x)满足以下两个条件:(1)对?x∈R,都有f(x)+f(-x)=0成立;(2)当x<0时,(x2+2x)f'(x)≥0
则下列不等关系中正确的是( )
A.f(-1)≤f(0)
B.f(-2)≤f(-3)
C.f(2)≥f(0)
D.f(1)≥f(2)
【答案】分析:利用奇函数的定义判断出f(x)是奇函数,通过解二次不等式判断出x2+2x的符号,从而得到导函数f′(x)的符号,判断出函数f(x)的单调性,利用f(x)的单调性判断出A,B错;利用f(x)的单调性与奇函数判断出C错D对.
解答:解:∵对?x∈R,都有f(x)+f(-x)=0成立
∴f(x)为奇函数
∵当x<-2时,x2+2x>0;当-2<x<0时,x2+2x>0
又∵当x<0时,(x2+2x)f'(x)≥0
∴当x<-2时,f'(x)≥0,函数f(x)递增或为常函数;当-2<x<0时,f'(x)≤0,函数f(x)递减或为常函数
∴f(-1)≥f(0),故A错
f(-2)≥f(-3),故B错
f(-2)≥f(0)即-f(2)≥f(0)即f(2)≤f(0),故C错
f(-1)≤f(-2)即-f(1)≤-f(2)即f(1)≥f(2)故D对
故选D.
点评:判断函数的奇偶性应该利用奇函数、偶函数的定义;利用导函数的符号判断函数的单调性:当导函数为正,函数递增;当导函数为负,函数递减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)=
1
x-2
(x>2)
1
2-x
(x<2)
1(x=2)
,若关于x的方程f2(x)+af(x)+b=3有且只有3个不同实数解x1、x2、x3,且x1<x2<x3,则x12+x22+x32=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)满足f(x)•f(x+2)=3,若f(1)=2,则f(5)=
2
2
;f(2011)=
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)设定义在R上的函数f(x)是最小正周期为2π的偶函数,f′(x)是f(x)的导函数.当x∈[0,π]时,0<f(x)<1;当x∈(0,π)且x≠
π
2
时,(x-
π
2
)f′(x)<0
.则函数y=f(x)-cosx在[-3π,3π]上的零点个数为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)满足f(x+π)=f(x-π),f(
π
2
-x
)=f(
π
2
+x
),当x∈[-
π
2
π
2
]
时,0<f(x)<1;当x∈(-
π
2
π
2
)
且x≠0时,x•f′(x)<0,则y=f(x)与y=cosx的图象在[-2π,2π]上的交点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)同时满足以下条件:①f(x+1)=-f(x)对任意的x都成立;②当x∈[0,1]时,f(x)=ex-e•cos
πx
2
+m(其中e=2.71828…是自然对数的底数,m是常数).记f(x)在区间[2013,2016]上的零点个数为n,则(  )
A、m=-
1
2
,n=6
B、m=1-e,n=5
C、m=-
1
2
,n=3
D、m=e-1,n=4

查看答案和解析>>

同步练习册答案