精英家教网 > 高中数学 > 题目详情

【题目】已知:以点C(t, )(t∈R,t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.
(1)当t=2时,求圆C的方程;
(2)求证:△OAB的面积为定值;
(3)设直线y=﹣2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.

【答案】
(1)解:当t=2时,圆心为C(2,1),

∴圆C的方程为(x﹣2)2+(y﹣1)2=5;


(2)证明:由题设知,圆C的方程为(x﹣t)2+(y﹣ 2=t2+

化简得x2﹣2tx+y2 y=0.

当y=0时,x=0或2t,则A(2t,0);

当x=0时,y=0或 ,则B(0, ),

∴SAOB= OAOB= |2t|| |=4为定值.


(3)解:∵OM=ON,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,

∴C、H、O三点共线,KMN=﹣2,则直线OC的斜率k=

∴t=2或t=﹣2.

∴圆心为C(2,1)或C(﹣2,﹣1),

∴圆C的方程为(x﹣2)2+(y﹣1)2=5或(x+2)2+(y+1)2=5.

由于当圆方程为(x+2)2+(y+1)2=5时,直线2x+y﹣4=0到圆心的距离d>r,

此时不满足直线与圆相交,故舍去,

∴所求的圆C的方程为(x﹣2)2+(y﹣1)2=5.


【解析】(1)当t=2时,圆心为C(2,1),即可得出圆C的方程;(2)求出半径,写出圆的方程,再解出A、B的坐标,表示出面积即可;(3)设MN的中点为H,则CH⊥MN,根据C、H、O三点共线,KMN=﹣2,由直线OC的斜率k= ,求得t的值,可得所求的圆C的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分图象如图所示.

(1)求f(x)的解析式;
(2)将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的 倍,再将所得函数图象向右平移 个单位,得到函数y=g(x)的图象,求g(x)的单调递增区间;
(3)当x∈[﹣ ]时,求函数y=f(x+ )﹣ f(x+ )的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)所示,已知四边形是由直角△和直角梯形拼接而成的,其中

.且点为线段的中点, 现将△沿进行翻折,使得二面角

的大小为,得到图形如图(2)所示,连接,点分别在线段上.

(1)证明:

(2)若三棱锥的体积为四棱锥体积的,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(Ⅰ)若是单调递增函数,求实数的取值范围;

(Ⅱ)令,若函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个古典型(或几何概型)中,若两个不同随机事件概率相等,则称是“等概率事件”,如:随机抛掷一枚骰子一次,事件“点数为奇数”和“点数为偶数”是“等概率事件”,关于“等概率事件”,以下判断正确的是__________.

①在同一个古典概型中,所有的基本事件之间都是“等概率事件”;

②若一个古典概型的事件总数为大于2的质数,则在这个古典概型中除基本事件外没有其他“等概率事件”;③因为所有必然事件的概率都是1,所以任意两个必然事件是“等概率事件”;

④随机同时抛掷三枚硬币一次,则事件“仅有一个正面”和“仅有两个正面”是“等概率事件”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.
)若函数处有极小值,求的值;
)若,设,求证:当时,
)若,对于给定,其中,若.求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点在轴上,且椭圆的焦距为2.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点的直线与椭圆交于两点,过轴且与椭圆交于另一点 为椭圆的右焦点,求证:三点在同一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】完成下列进位制之间的转化.

(1)10231(4)________(10)

(2)235(7)________(10)

(3)137(10)________(6)

(4)1231(5)________(7)

(5)213(4)________(3)

(6)1010111(2)________(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的等比数列{an}中,a4与a14的等比中项为 ,则2a7+a11的最小值为

查看答案和解析>>

同步练习册答案