精英家教网 > 高中数学 > 题目详情
20.若a=$\frac{\sqrt{3}}{2}$cos5°-$\frac{1}{2}$sin5°,b=2sin27°•cos27°,c=$\sqrt{\frac{1+cos48°}{2}}$,则a、b、c的大小关系是(  )
A.a<b<cB.c<a<bC.b<a<cD.c<b<a

分析 由条件利用三角恒等变换,正弦函数的单调性,得出结论.

解答 解:a=$\frac{\sqrt{3}}{2}$cos5°-$\frac{1}{2}$sin5°=sin(60°-5°)=sin55°,
b=2sin27°•cos27°=sin54°,c=$\sqrt{\frac{1+cos48°}{2}}$=cos24°=sin66°,
而函数y=sinx在(0°,90°)上单调递增,
则a、b、c的大小关系为 c>a>b,
故选:C.

点评 本题主要考查三角恒等变换,正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.数学运算中,常用符号来表示算式,如$\sum_{i=0}^{n}{a}_{i}$=a0+a1+a2+a3+…+an,其中i∈N,n∈N*
(Ⅰ)若a0、a1、a2、…an成等差数列,且a0=0,公差d=1,求证:$\sum_{i=0}^{n}$(aiC${\;}_{n}^{i}$)=n•2n-1
(Ⅱ)若$\sum_{k=1}^{2n}$(1+x)k=a0+a1x+a2x2+…+a2nx2k,bn=$\sum_{i=0}^{n}{a}_{2i}$,记dn=1+$\sum_{i=1}^{n}$[(-1)ibiC${\;}_{n}^{i}$]且不等式t•(dn-1)≤bn对于?n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦点,过点F向C的一条渐近线引垂线,垂足为A,交另一条渐近线于点B,F在线段AB上,O为坐标原点,若|OB|=2|OA|,则双曲线C的离心率是$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对于任意实数a、b,(a-b)2≥kab均成立,则实数k的取值范围是(  )
A.{-4,0}B.[-4,0]C.(-∞,0]D.(-∞,-4]∪[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.将正整数排成如图所示:其中第i行,第j列的那个数记为aij,则数表中的2015应记为a4579

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知复数z满足z+|z|=2+8i,其中i为虚数单位,则|z|=17.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.组合数$C_n^r\;(n>r≥1,n,r∈N)$恒等于(  )
A.$\frac{r+1}{n+1}C_{n-1}^{r-1}$B.$\frac{n+1}{r+1}C_{n-1}^{r-1}$C.$\frac{r}{n}C_{n-1}^{r-1}$D.$\frac{n}{r}C_{n-1}^{r-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,对于点P(x0,y0)、直线l:ax+by+c=0,我们称$δ=\frac{{a{x_0}+b{y_0}+c}}{{\sqrt{{a^2}+{b^2}}}}$为点P(x0,y0)到直线l:ax+by+c=0的方向距离.
(1)设椭圆$\frac{x^2}{4}+{y^2}=1$上的任意一点P(x,y)到直线l1:x-2y=0,l2:x+2y=0的方向距离分别为δ1、δ2,求δ1δ2的取值范围.
(2)设点E(-t,0)、F(t,0)到直线l:xcosα+2ysinα-2=0的方向距离分别为η1、η2,试问是否存在实数t,对任意的α都有η1η2=1成立?若存在,求出t的值;不存在,说明理由.
(3)已知直线l:mx-y+n=0和椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),设椭圆E的两个焦点F1,F2到直线l的方向距离分别为λ1、λ2满足${λ_1}{λ_2}>{b^2}$,且直线l与x轴的交点为A、与y轴的交点为B,试比较|AB|的长与a+b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.空间中,如果两个角的两条边分别对应平行,那么这两个角(  )
A.相等B.互补C.相等或互补D.不能确定

查看答案和解析>>

同步练习册答案