精英家教网 > 高中数学 > 题目详情
将3个相同的黑球和3个相同的白球自左向右排成一排,如果满足:从任何一个位置(含这个位置)开始向右数,数到最末一个球,黑球的个数大于或等于白球的个数,就称这种排列为“有效排列”,则出现“有效排列”的概率为( )
A.
B.
C.
D.
【答案】分析:由题意知六个球由3个相同的黑球和3个相同的白球组成,自左向右排成一排全部的排法有,再由列举法得出“有效排列”的排法种数,由公式求出概率
解答:解:由意六个球由3个相同的黑球和3个相同的白球组成,自左向右排成一排全部的排法有=20,
构成“有效排列”的有:黑黑黑白白白 黑白黑白黑白    黑白黑黑白白   黑黑白黑白白  黑黑白白黑白  共五种
所以出现“有效排列”的概率为=
故选B
点评:本题考查等可能事件的概率,求解的关键是求出“有效排列”的种数,以及掌握求等可能事件的概率公式,本题中考查了新定义,此类题要对定义进行理解,依据定义进行运算,新定义的题是一种考查阅读能力及应用能力的一种重要题型,近几年的高考中多有出现,要好好把握其规律.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将3个相同的黑球和3个相同的白球自左向右排成一排,如果满足:从任何一个位置(含这个位置)开始向左数,黑球的个数总是不小于白球的个数,就称这种排列为“有效排列”,则出现“有效排列”的概率为(  )
A、
1
2
B、
1
4
C、
1
5
D、
1
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)将3个相同的黑球和3个相同的白球自左向右排成一排,如果满足:从任何一个位置(含这个位置)开始向右数,数到最末一个球,黑球的个数大于或等于白球的个数,就称这种排列为“有效排列”,则出现“有效排列”的概率为(  )

查看答案和解析>>

科目:高中数学 来源:温州一模 题型:单选题

将3个相同的黑球和3个相同的白球自左向右排成一排,如果满足:从任何一个位置(含这个位置)开始向左数,黑球的个数总是不小于白球的个数,就称这种排列为“有效排列”,则出现“有效排列”的概率为(  )
A.
1
2
B.
1
4
C.
1
5
D.
1
10

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(下)5月月考数学试卷(文科)(解析版) 题型:选择题

将3个相同的黑球和3个相同的白球自左向右排成一排,如果满足:从任何一个位置(含这个位置)开始向左数,黑球的个数总是不小于白球的个数,就称这种排列为“有效排列”,则出现“有效排列”的概率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2009年浙江省温州市高考数学一模试卷(理科)(解析版) 题型:选择题

将3个相同的黑球和3个相同的白球自左向右排成一排,如果满足:从任何一个位置(含这个位置)开始向左数,黑球的个数总是不小于白球的个数,就称这种排列为“有效排列”,则出现“有效排列”的概率为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案