精英家教网 > 高中数学 > 题目详情
设数列{an}是公差不为零的等差数列,前n项和为Sn,满足a22+a32=a42+a52,S7=7,则使得
amam+1am+2
为数列{an}中的项的所有正整数m的值为
 
分析:根据等差数列的通项公式及前n项和的公式分别化简已知的两等式,得到关于首项和公差的两个方程,联立两方程即可求出首项和公差的值,进而得到等差数列的通项公式an=2n-7,利用通项公式化简
amam+1
am+2
,让化简得到的式子等于2n-7,然后设b=2m-3,代入得到到b+6+
8
b
=2n-7,根据
b
8
为偶数且b大于等于-1的奇数,即可得到b的值,利用b的值求出m的值,代入原题检验,即可得到满足题意的m的值.
解答:解:由a22+a32=a42+a52得:2a1+5d=0①,
由S7=
7(a1+a7
2
=7a4=7(a1+3d)=7,得到a1+3d=1②,
联立①②,解得:a1=-5,d=2,
所以an=-5+2(n-1)=2n-7,
根据题意得:
amam+1
am+2
=
(2m-7)(2m-5)
2m-3
=2n-7,
设2m-3=b,得到b-6+
8
b
=2n-7,得到
8
b
必须为偶数,即b=-1,1,-2,2,-4,4,
又b≥-1(数列的第三项)且b为奇数,得到b=-1或b=1,
进而得到m=1或m=2,
当m=1时,
amam+1
am+2
=
63
5
=2n-7,解得n不为正整数,不合题意舍去,
所以满足题意的正整数m的值为2.
故答案为:2
点评:此题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,掌握等差数列的性质,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}是公差不为0的等差数列,Sn为前n项和,满足a3,2a5,a12成等差数列,S10=60.
(1)求数列{an}的通项公式及前n项和Sn
(2)试求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公差不为0的等差数列,a1=1且a1,a3,a6成等比数列,则{an}的前n项和Sn等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)设数列{an}是公差不为0的等差数列,a1=1且a1,a3,a6成等比数列,则数列{an}的前n项和Sn=
1
8
n2+
7
8
n
1
8
n2+
7
8
n

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)设数列{an}是公差不为0的等差数列,Sn为其前n项和,若
a
2
1
+
a
2
2
=
a
2
3
+
a
2
4
,S5=5,则a7的值为
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公差不为0的等差数列,Sn为前n项和,满足a3,2a5,a12 成等差数列,S10=60.
(1)求数列{an}的通项公式及前n项和Sn
(2)试求所有正整数m,使
am+12+2am
为数列{an}中的项.

查看答案和解析>>

同步练习册答案