【题目】已知两平行直线4x﹣2y+7=0,2x﹣y+1=0之间的距离等于坐标原点O到直线l:x﹣2y+m=0的距离的一半.
(1)求m的值;
(2)判断直线l与圆 的位置关系.
【答案】
(1)解:2x﹣y+1=0化为4x﹣2y+2=0,
则两平行直线4x﹣2y+7=0,2x﹣y+1=0之间的距离等于 = ,
∴点O到直线l:x﹣2y+m=0(m>0)的距离= = ,
∵m>0
∴m=5
(2)解:圆C:x2+(y﹣2)2= 的圆心C(0,2),半径r= ,
∵C到直线l的距离d= = ,
∴l与圆C相切
【解析】(1)求出两平行直线4x﹣2y+7=0,2x﹣y+1=0之间的距离,利用两平行直线4x﹣2y+7=0,2x﹣y+1=0之间的距离等于坐标原点O到直线l:x﹣2y+m=0(m>0)的距离的一半,建立方程,即可求m的值;(2)求出C到直线l的距离,即可得出结论.
科目:高中数学 来源: 题型:
【题目】某次大型运动会的组委会为了搞好接待工作,招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.
(1)根据以上数据完成下面2×2列联表:
喜爱运动 | 不喜爱运动 | 总计 | |
男 | 10 | 16 | |
女 | 6 | 14 | |
总计 | 30 |
(2)能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关系?
(3)已知喜欢运动的女志愿者中恰有4人会外语,如果从中抽取2人负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?
参考公式:K2= ,其中n=a+b+c+d.
参考数据:
P(K2≥k0) | 0.40 | 0.25 | 0.10 | 0.010 |
k0 | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 ,曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直.
(1)求a的值;
(2)若x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的范围.
(3)求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近几年,电商行业的蓬勃发展也带动了快递业的高速发展.某快递配送站每天至少要完成1800件包裹的配送任务,该配送站有8名新手快递员和4名老快递员,但每天最多安排10人进行配送.已知每个新手快递员每天可配送240件包裹,日工资320元;每个老快递员每天可配送300件包裹,日工资520元.
(1)求该配送站每天需支付快递员的总工资最小值;
(2)该配送站规定:新手快递员某个月被评为“优秀”,则其下个月的日工资比这个月提高12%.那么新手快递员至少连续几个月被评为“优秀”,日工资会超过老快递员?
(参考数据: , , .)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益函数为R(x)= ,其中x是仪器的产量(单位:台);
(1)将利润f(x)表示为产量x的函数(利润=总收益﹣总成本);
(2)当产量x为多少台时,公司所获利润最大?最大利润是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为得到函数y=sin(x+ )的图象,可将函数y=sinx的图象向左平移m个单位长度,或向右平移n个单位长度(m,n均为正数),则|m﹣n|的最小值是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com