精英家教网 > 高中数学 > 题目详情

【题目】已知F为抛物线的焦点,过F且倾斜角为的直线交抛物线于AB两点,.

1)求抛物线的方程:

2)已知为抛物线上一点,MN为抛物线上异于P的两点,且满足,试探究直线MN是否过一定点?若是,求出此定点;若不是,说明理由.

【答案】1 2)过定点,

【解析】

(1)设出直线的方程,联立抛物线的方程,根据韦达定理即可求解出的值,即可求解出抛物线的方程;

(2)求解出点坐标,设出直线的方程,根据求解出之间的关系,从而确定出直线所过的定点.

解:(1)由已知,直线AB的方程为

联立直线与抛物线,消y可得,,所以

因为,所以

即抛物线的方程为.

2)将代入可得

不妨设直线MN的方程为,

联立,消x

则有

由题意,

化简可得,

代入

此时直线MN的方程为

所以直线MN过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线和曲线为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,且两种坐标系中取相同的单位长度.

(1)求曲线和曲线的极坐标方程;

(2)设曲线轴、轴分别交于两点,且线段的中点为,若射线与曲线交于点,求两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与直线交于两点,不与轴垂直,圆.

(1)若点在椭圆上,点在圆上,求的最大值;

(2)若过线段的中点且垂直于的直线过点,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体中,EFPQ分别为棱的中点,则下列结论正确的是(

A.B.平面EFPQ

C.平面EFPQD.直线所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为2的菱形,平面ABCD,且.

1)求直线AD和平面AEF所成角的大小;

2)求二面角E-AF-D的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着计算机的出现,图标被赋予了新的含义,又有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为3部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3、宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,则此点取自图标第三部分的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等轴双曲线的右焦点为为坐标原点,过作一条渐近线的垂线且垂足为.

1)求等轴双曲线的方程;

2)若过点且方向向量为的直线交双曲线两点,求的值;

3)假设过点的动直线与双曲线交于两点,试问:在轴上是否存在定点,使得为常数,若存在,求出的坐标,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季取暖时减少能源消耗,业主决定对房屋的屋顶和外墙喷涂某种新型隔热材料,该材料有效使用年限为20年.已知房屋外表喷一层这种隔热材料的费用为每毫米厚6万元,且每年的能源消耗费用(万元)与隔热层厚度(毫米)满足关系:.设为隔热层建造费用与年的能源消耗费用之和.

(1)请解释的实际意义,并求的表达式;

(2)当隔热层喷涂厚度为多少毫米时,业主所付的总费用最少?并求此时与不建隔热层相比较,业主可节省多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某地区年龄在25~55岁的人员中,随机抽出100人,了解他们对今年两会的热点问题的看法,绘制出频率分布直方图如图所示,则下列说法正确的是( )

A. 抽出的100人中,年龄在40~45岁的人数大约为20

B. 抽出的100人中,年龄在35~45岁的人数大约为30

C. 抽出的100人中,年龄在40~50岁的人数大约为40

D. 抽出的100人中,年龄在35~50岁的人数大约为50

查看答案和解析>>

同步练习册答案