精英家教网 > 高中数学 > 题目详情

【题目】如图所示,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

【答案】
(1)证明:∵BF⊥平面ACE,AE平面ACE,

∴BF⊥AE,BF⊥CE,

∵EB=BC,∴F是CE的中点,

又∵AD⊥平面ABE,AD平面ABCD,

∴平面ABCD⊥平面ABE,

∵平面ABCD∩平面ABE=AB,BC⊥AB

∴BC⊥平面ABE,

从而BC⊥AE,且BC∩BF=B,

∴AE⊥平面BCE,BE平面BCE,

∴AE⊥BE;


(2)证明:在△ABE中过M点作MG∥AE交BE于G点,

在△BEC中过G点作GN∥BC交EC于N点,连MN,

∴CN= CE.

∵MG∥AE,MG平面ADE,AE平面ADE,

∴MG∥平面ADE.

同理,GN∥平面ADE,且MG与GN交于G点,

∴平面MGN∥平面ADE.

又MN平面MGN,

∴MN∥平面ADE.

故N点为线段CE上靠近C点的一个三等分点.


【解析】(1)由AD∥BC和AD⊥平面ABE证明AE⊥BC,再由BF⊥平面ACE得AE⊥BF,根据线面垂直的判定定理证出AE⊥平面BCE,即证出AE⊥BE;(2)在△ABE中过M点作MG∥AE交BE于G点,在△BEC中过G点作GN∥BC交EC于N点,连MN,证明平面MGE∥平面ADE,可得MN∥平面ADE,从而可得结论.
【考点精析】本题主要考查了空间中直线与直线之间的位置关系和直线与平面平行的性质的相关知识点,需要掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点;一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行;简记为:线面平行则线线平行才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数 的图象向左平移φ(φ>0)个单位后,所得到的图象对应的函数为奇函数,则φ的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设小明家订了一份报纸,送报人可能在早上6:30﹣7:30之间把报纸送到小明家,小明父亲离开家去工作的时间在早上7:00﹣8:00之间,问小明父亲在离开家前能得到报纸(称为事件A)的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线在点处的切线方程;

(2)若函数在其定义域内为增函数,求的取值范围;

(3)在(2)的条件下,设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

支持

不支持

合计

年龄不大于50岁

80

年龄大于50岁

10

合计

70

100

(1)根据已有数据,把表格数据填写完整;

(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?

(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位女教师的概率.

附:

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明命题“当n是正奇数时,xn+yn能被x+y整除”,在第二步的证明时,正确的证法是(  )
A.假设n=k(k∈N*)时命题成立,证明n=k+1时命题也成立
B.假设n=k(k是正奇数)时命题成立,证明n=k+1时命题也成立
C.假设n=k(k是正奇数)时命题成立,证明n=k+2时命题也成立
D.假设n=2k+1(k∈N)时命题成立,证明n=k+1时命题也成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正四棱柱中,底面边长,侧棱 的长为4,过点的垂线交侧棱于点,交于点

1)求证: 平面

2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)写出曲线的直角坐标方程;

(2)已知点的直角坐标为,直线与曲线相交于不同的两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的奇函数的图像是一条连续不断的曲线,当时,;当时,,且,则关于的不等式的解集为(

A. B. C. D.

查看答案和解析>>

同步练习册答案