精英家教网 > 高中数学 > 题目详情
10.一个几何体的三视图如图所示,其中俯视图是一个腰长为2的等腰直角三角形,侧视图是一个直角边长为1的直角三角形,则该几何体外接球的体积是(  )
A.36πB.C.$\frac{9}{2}π$D.$\frac{27}{5}π$

分析 由已知中的三视图可得该几何体是一个三棱锥,求出底面外接圆半径和棱锥的高,进而利用勾股定理,求出其外接球的半径,代入球的体积公式,可得答案.

解答 解:∵俯视图是一个腰长为2的等腰直角三角形,
故底面外接圆半径r=$\sqrt{2}$,
由主视图中棱锥的高h=1,
故棱锥的外接球半径R满足:R=$\sqrt{\frac{1}{4}+2}$=$\frac{3}{2}$,
故该几何体外接球的体积V=$\frac{4}{3}$πR3=$\frac{9}{2}$π,
故选:C.

点评 解决三视图的题目,关键是由三视图判断出几何体的形状及度量长度,进而求出外接球半径,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.抛物线y2=16x的焦点到双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的渐近线的距离是(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合M={x|(x-1)(x-4)=0},N={x|(x+1)(x-3)<0},则M∩N=(  )
A.B.{1}C.{4}D.{1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC的面积为360,点P是三角形所在平面内一点,且$\overrightarrow{AP}=\frac{1}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$,则△PAB的面积为90.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某租车公司给出的财务报表如下:
1014年(1-12月)1015年(1-12月)1016年(1-11月)
接单量(单)144632724012512550331996
油费(元)214301962591305364653214963
平均每单油费t(元)14.8214.49
平均每单里程k(公里)1515
每公里油耗a(元)0.70.70.7
有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为$T=\frac{t-ak}{ak}•100%$.
(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);
(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知从“神十”飞船带回的某种植物种子每粒成功发芽的概率都为$\frac{1}{3}$,某植物研究所进行该种子的发芽实验,每次实验种一粒种子,每次实验结果相互独立,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验,设ξ表示四次实验结束时实验成功的次数与失败的次数之差的绝对值.
(Ⅰ)求随机变量ξ的分布列及ξ的数学期望E(ξ);
(Ⅱ)记“不等式ξx2-ξx+1>0的解集是实数集R”为事件A,求事件A发生的概率P(A).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知直线y=ax与圆C:x2+y2-2ax-2y+2=0交于两点A,B,且△CAB为等边三角形,则圆C的面积为6π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是某空间几何体的三视图其中主视图、侧视图、俯视图依次为直角三角形、直角梯形、等边三角形,则该几何体的体积(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数$f(x)=2sin({ωx+φ})({ω>0,-\frac{π}{2}<ω<\frac{π}{2}})$的部分图象如图所示,将f(x)的图象向左平移$\frac{π}{6}$个单位后的解析式为y=2sin2x.

查看答案和解析>>

同步练习册答案