精英家教网 > 高中数学 > 题目详情

【题目】已知直线的参数方程为为参数),在以坐标原点为极点, 轴的正半轴为极轴建立的极坐标系中,圆的极坐标方程为

(1)求直线被圆截得的弦长;

(2)若点的坐标为,直线与圆交于两点,求的值.

【答案】(1);(2)7.

【解析】试题分析:(1)将直线的参数方程消去参数,化为普通方程得,圆的极坐标方程化为普通方程可得,圆心到直线的距离,由勾股定理能求出直线被圆截得的弦长;(2)把代入,得,由根据直线参数方程的几何意义结合韦达定理能求出的值.

试题解析:(1)将直线的参数方程化为普通方程可得,而圆的极坐标方程可化为,化为普通方程可得

则圆心到直线的距离为

故直线被圆截得的弦长为

(2)把代入,可得

(*).

是方程(*)的两个根,则,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC=2

(1)求证:AM⊥平面EBC
(2)(文)求三棱锥C﹣ABE的体积.
(3)(理)求二面角A﹣EB﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知长方体ABCD﹣A1B1C1D1中,E,M,N分别是BC,AE,CD1的中点,AD=AA1=a,AB=2a.求证:MN∥平面ADD1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点( ,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆的一个短轴端点及两个焦点构成的三角形的面积为,圆C方程为.

(1)求椭圆及圆C的方程;

(2)过原点O作直线l与圆C交于A,B两点,若,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若的图像在处的切线与轴平行,求的极值;

(2)若函数内单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图已知抛物线的焦点坐标为,过的直线交抛物线两点,直线分别与直线相交于两点

(1)求抛物线的方程;

(2)证明△ABO与MNO的面积之比为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组;第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.

(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(2)设m,n表示该班某两位同学的百米测试成绩,且已知m,n∈[13,14)∪[17,18],求事件“|m﹣n|>1”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于( )

A.m
B.m
C.m
D.m

查看答案和解析>>

同步练习册答案