精英家教网 > 高中数学 > 题目详情
17.若4≤a≤8,0≤b≤2,则a+b的取值范围是(  )
A.(4,10)B.[4,10]C.(6,8)D.[6,8]

分析 直接利用不等式的简单性质计算即可.

解答 解:4≤a≤8,0≤b≤2,则a+b∈[4,10].
故选:B.

点评 本题考查不等式的简单性质的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系中,点P是直线l:x=-$\frac{1}{2}$上一动点,定点F($\frac{1}{2}$,0),点Q为PF的中点,动点M满足$\overrightarrow{MQ}$•$\overrightarrow{PF}$=0,$\overrightarrow{MP}$=λ$\overrightarrow{OF}$(λ∈R),过点M作圆(x-3)2+y2=2的切线,切点分别为S,T,则满足|ST|的最小值为$\frac{2\sqrt{30}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.先把函数y=cosx的图象上所有点向右平移$\frac{π}{3}$个单位,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到的函数图象的解析式为(  )
A.y=cos(2x+$\frac{π}{3}$)B.y=cos(2x-$\frac{π}{3}$)C.y=cos($\frac{1}{2}$x+$\frac{π}{3}$)D.y=cos($\frac{1}{2}$x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1+x,x),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x的值为$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2+ax+b,a,b∈R,A={x|f(x)=x,x∈R},B={x|f[f(x)]=x,x∈R}
(1)写出集合A与B之间的关系,并证明;
(2)当A={-1,3}时,用列举法表示集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知曲线C的方程为$\frac{x^2}{a^2}-{y^2}$=1(a∈R且a≠0),则“a>1”是“曲线C是焦点在x轴上的双曲线”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}满足a3=5,a5+a7=22,等差数列{an}的前n项和Sn
(Ⅰ)求数列{an}的通项an和前n项和Sn
(Ⅱ)若bn=2nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某工厂生产甲、乙、丙三种不同型号的产品,产品数量之比依次为5:2:3,现用分层抽样的方法抽出一个容量为n的样本,样本中甲型号产品共15件,那么样本容量n=30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线y=x+m与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1有两个公共点,则m的取值范围是(  )
A.(-5,5)B.(-2,2)C.(-$\sqrt{7}$,$\sqrt{7}$)D.(-$\sqrt{3}$,$\sqrt{3}$)

查看答案和解析>>

同步练习册答案