精英家教网 > 高中数学 > 题目详情
12.已知直线l过点(0,1),且倾斜角为$\frac{π}{6}$,当此直线与抛物线x2=4y交于A,B时,|AB|=(  )
A.$\frac{16}{3}$B.16C.8D.$\frac{{16\sqrt{3}}}{3}$

分析 求出直线方程,直线方程与抛物线方程联立,利用弦长公式求解即可.

解答 解:直线$l:y=\frac{{\sqrt{3}}}{3}x+1$与x2=4y联立得${x^2}-\frac{{4\sqrt{3}}}{3}x-4=0$,$△=\frac{64}{3}$,
x1+x2=$\frac{4\sqrt{3}}{3}$,x1x2=-4
故$|{AB}|=\sqrt{1+{k^2}}•|{{x_1}-{x_2}}|=\sqrt{1+\frac{1}{3}}•\frac{8}{{\sqrt{3}}}=\frac{16}{3}$,
故选:A.

点评 本题考查直线与抛物线的位置关系的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,在矩形ABCD中,AD=$\sqrt{5}$,AB=3,E、F分别为AB边、CD边上一点,且AE=DF=l,现将矩形ABCD沿EF折起,使得平面ADFE⊥平面BCFE,连接AB、CD,则所得三棱柱ABE-DCF的侧面积比原矩形ABCD的面积大约多(取$\sqrt{5}$≈2.236)(  )
A.68%B.70%C.72%D.75%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.抛物线y2=12x上与焦点的距离等于9的点的坐标(  )
A.$(6,±6\sqrt{2})$B.$(6\sqrt{2},±6)$C.$(12,±6\sqrt{2})$D.$(6\sqrt{2},±12)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=|x-1|+$\frac{1}{2}$|x-3|.
(1)作出函数图象,并求不等式f(x)>2的解集;
(2)设g(x)=$\frac{{x}^{2}+m}{x}$,若对于任意的x1,x2∈[3,5]都有f(x1)≤g(x2)恒成立,求正实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.$\frac{sin11°+cos75°sin64°}{cos11°-sin75°sin64°}$=$2+\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设数列{an}满足a1=2,an+1-an=3•22n-1
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}中,a4=14,前10项和S10=185.
(1)求数列{an}的通项公式an
(2)设{bn}是首项为1,公比为2的等比数列,求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设椭圆C$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,l是右准线,若椭圆上存在一点P使得PF1是P到直线l的距离的3倍,则椭圆的离心率的取值范围是[$\sqrt{7}$-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知不等式$\frac{{{2^x}+1}}{3}>1-\frac{{{2^x}-1}}{2}$的解集为M,则下列说法正确的是(  )
A.{0}⊆MB.M=∅C.-1∈MD.2∈M

查看答案和解析>>

同步练习册答案