【题目】已知函数f(x)=sin(ωx﹣φ), 的图象经过点 ,且相邻两条对称轴的距离为 . (Ⅰ)求函数f(x)的解析式及其在[0,π]上的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别是A,B,C的对边,若 ,求∠A的大小.
科目:高中数学 来源: 题型:
【题目】某公司设计如图所示的环状绿化景观带,该景观带的内圈由两条平行线段(图中的AB,DC)和两个半圆构成,设AB=xm,且x≥80.
(1)若内圈周长为400m,则x取何值时,矩形ABCD的面积最大?
(2)若景观带的内圈所围成区域的面积为 m2 , 则x取何值时,内圈周长最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚疼减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起脚疼每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了?”根据此规律,求后3天一共走多少里( )
A.156里
B.84里
C.66里
D.42里
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知F1、F2是椭圆G: 的左、右焦点,直线l:y=k(x+1)经过左焦点F1 , 且与椭圆G交于A、B两点,△ABF2的周长为 .
(Ⅰ)求椭圆G的标准方程;
(Ⅱ)是否存在直线l,使得△ABF2为等腰直角三角形?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,四边形ABCD为等腰梯形,AB∥CD,AB=2AD=2,∠DAB=60°,四边形CDEF为正方形,平面CDEF⊥平面ABCD.
(Ⅰ)若点G是棱AB的中点,求证:EG∥平面BDF;
(Ⅱ)求直线AE与平面BDF所成角的正弦值;
(Ⅲ)在线段FC上是否存在点H,使平面BDF⊥平面HAD?若存在,求 的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学随机选取了40名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.
(Ⅰ)求a的值及样本中男生身高在[185,195](单位:cm)的人数;
(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;
(Ⅲ)在样本中,从身高在[145,155)和[185,195](单位:cm)内的男生中任选两人,求这两人的身高都不低于185cm的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】二分法是求方程近似解的一种方法,其原理是“一分为二、无限逼近”.执行如图所示的程序框图,若输入x1=1,x2=2,d=0.01则输出n的值( )
A.6
B.7
C.8
D.9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com