精英家教网 > 高中数学 > 题目详情

【题目】已知圆过两点 且圆心在直线

(Ⅰ)求圆的标准方程;

(Ⅱ)直线过点且与圆有两个不同的交点 ,若直线的斜率大于0,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,是否存在直线使得弦的垂直平分线过点,若存在,求出直线的方程;若不存在,请说明理由.

【答案】x12+y2=25(Ⅱ (Ⅲx+2y1=0.

【解析】试题分析:(Ⅰ)圆心C是MN的垂直平分线与直线2x-y-2=0的交点,CM长为半径,进而可得圆的方程;
(Ⅱ)直线l过点(-2,5)且与圆C有两个不同的交点,则C到l的距离小于半径,进而得到k的取值范围;
(Ⅲ)求出AB的垂直平分线方程,将圆心坐标代入求出斜率,进而可得答案.

试题解析:

(I)MN的垂直平分线方程为:x﹣2y﹣1=02x﹣y﹣2=0联立解得圆心坐标为C(1,0)

R2=|CM|2=(﹣3﹣1)2+(3﹣0)2=25

∴圆C的标准方程为:(x﹣1)2+y2=25

II)设直线的方程为:y5=kx+2)即kxy+2k+5=0,设C到直线l的距离为d

d=

由题意:d<5 即:8k2﹣15k>0

∴k<0k>

又因为k>0

∴k的取值范围是(,+∞)

III设符合条件的直线存在,则AB的垂直平分线方程为:y+1=x3)即:x+ky+k3=0

∵弦的垂直平分线过圆心(1,0)∴k﹣2=0 k=2

∵k=2>

故符合条件的直线存在,l的方程:x+2y﹣1=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4 坐标系与参数方程

在直角坐标系中,圆,曲线的参数方程为为参数),并以为极点, 轴正半轴为极轴建立极坐标系.

(1)写出的极坐标方程,并将化为普通方程;

(2)若直线的极坐标方程为相交于两点,

的面积(为圆的圆心).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在学校体育节中,某班全体40名同学参加跳绳、踢毽子两项比赛的人数统计如下:

参加跳绳的同学

未参加跳绳的同学

参加踢毽的同学

9

4

未参加踢毽的同学

7

20

(1)从该班随机选1名同学,求该同学至少参加上述一项活动的概率;

(2)已知既参加跳绳又参加踢毽的9名同学中,有男生5名,女生4名,现从这5名男生,4名女生中各随机挑选1人,求男同学甲未被选中且女同学乙被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆 是圆上的动点,线段的垂直平分线交于点.

(1)求点的轨迹的方程;

2)设 过点的直线与曲线交于点(异于点),过点的直线与曲线交于点,直线倾斜角互补.

①直线的斜率是否为定值?若是,求出该定值;若不是,说明理由;

②设的面积之和为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,满足前n项和.

(I)证明:

(Ⅱ)证明:

(Ⅲ)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和Sn , 若a3+a7﹣a10=8,a11﹣a4=4,则S13等于(
A.152
B.154
C.156
D.158

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)的最小正周期和单调递增区间;

(2)已知三边长,且的面积.求角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A,B分别在射线CM,CN(不含端点C)上运动,∠MCN= ,在△ABC中,角A,B,C所对的边分别是a,b,c
(1)若a,b,c依次成等差数列,且公差为2,求c的值:
(2)若c= ,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左顶点、右焦点,点为椭圆上一动点,当轴时, .

(1)求椭圆的离心率;

(2)若椭圆存在点,使得四边形是平行四边形(点在第一象限),求直线的斜率之积;

(3)记圆为椭圆的“关联圆”. 若,过点作椭圆的“关联圆”的两条切线,切点为,直线的横、纵截距分别为,求证: 为定值.

查看答案和解析>>

同步练习册答案