精英家教网 > 高中数学 > 题目详情
17.已知f(x)为偶函数,且f(x)在[0,+∞)单调递增,若f(ax+1)-f(x-2)≤0在$x∈[\frac{1}{2},1]$上恒成立,则实数a的取值范围是[-2,0].

分析 因为偶函数在对称区间上单调性相反,根据已知中f(x)是偶函数,且f(x)在(0,+∞)上是增函数,易得f(x)在(-∞,0)上为减函数,又由若x∈[$\frac{1}{2}$,1]时,不等式f(ax+1)≤f(x-2)恒成立,结合函数恒成立的条件,求出x∈[$\frac{1}{2}$,1]时f(x-2)的最小值,从而可以构造一个关于a的不等式,解不等式即可得到实数a的取值范围.

解答 解:∵f(x)是偶函数,且f(x)在(0,+∞)上是增函数
∴f(x)在(-∞,0)上为减函数
当x∈[$\frac{1}{2}$,1]时,x-2∈[-$\frac{3}{2}$,-1]
故f(x-2)≥f(1)
若x∈[$\frac{1}{2}$,1]时,不等式f(ax+1)≤f(x-2)恒成立,
则当x∈[$\frac{1}{2}$,1]时,|ax+1|≤1恒成立,解得-2≤a≤0
故答案为[-2,0]

点评 本题的考点是函数恒成立问题,主要考查的知识点是奇偶性与单调性的综合,其中根据已知条件结合偶函数在对称区间上单调性相反,证得f(x)在(-∞,0)上为减函数,进而给出x∈[$\frac{1}{2}$,1]时f(x-2)的最小值,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}t+2}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以原点O为极点,x轴张半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ.
(Ⅰ)若a=2,求圆C的直角坐标方程与直线l的普通方程;
(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的$\sqrt{2}$倍,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.幂函数f(x)的图象过点$({3,\root{3}{9}})$,则f(8)=(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在长方体ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3.
(1)求BD1与平面ABCD所成的角的余弦;
(2)求异面直线A1B与B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\frac{1}{{{3^x}-1}}$+a(x≠0),则“f(1)=1”是“函数f(x)为奇函数”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既非充分又非必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={x|1≤x≤6,x∈N},对于A的每个非空子集,定义其“交替和”如下:把集合中的数按从大到小的顺序排列,然后从最大的数开始交替地加减各数(如:{1,2,5}的“交替和”是5-2+1=4,{6,3}的“交替和”就是6-3=3,{3}的“交替和”就是3).则集合A的所有这些“交替和”的总和为(  )
A.128B.192C.224D.256

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),当x>0时,f(x)<0,且f(1)=-2.
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)求f(x)在区间[-2,2]上的最大值;
(Ⅲ)若a≥0,解关于x的不等式f(ax2)-2f(x)<f(ax)+4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是(  )
A.x+y-1=0B.2x-y+1=0C.x-2y+1=0D.x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={(x,y)|x2+(y+1)2≤1},B={(x,y)|$\sqrt{3}$x+y=4m},命题p:A∩B=∅,命题q:方程$\frac{{x}^{2}}{2m}$+$\frac{{y}^{2}}{1-m}$=1表示焦点在y轴上的椭圆.
(1)若命题p为真命题,求实数m的取值范围;
(2)若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

同步练习册答案