精英家教网 > 高中数学 > 题目详情

已知函数处有极大值
(1)求的解析式;
(2)求的单调区间;

(1)
(2)单调递增区间为;单调递减区间为

解析试题分析:(1)先对函数求导,根据函数在x=-1处有极大值7,得到函数在-1处的导数为0,且此处的函数值是7,列出关于字母系数的方程组,解方程组即可.
(2)根据上一问做出来的函数的解析式,是函数的导函数分别大于零和小于零,解出对应的不等式的解集,就是我们要求的函数的单调区间.
试题解析:(1),                1分
由已知可知,                     3分
所以,解得,            4分
所以.               5分
(2)由,            7分
可知:当时,时,
时,,                   10分
所以的单调递增区间为;单调递减区间为.         12分
考点:函数在某点取得极值的条件;利用导数研究函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间和极值;
(2)当,且时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若,求函数上的最小值;
(2)若函数存在单调递增区间,试求实数的取值范围;
(3)求函数的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若,求曲线在点处的切线方程;
(2)若 求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,记.
(1)求曲线处的切线方程;
(2)求函数的单调区间;
(3)当时,若函数没有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,若在区间上的最小值为-2,求的取值范围;
(3)若对任意,且恒成立,求的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图像与x轴交于两点,且,又的导函数,若正常数满足条件.证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若处取得极值,求实数的值;
(2)求函数的单调区间;
(3)若上没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.

查看答案和解析>>

同步练习册答案