已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数的图象如图,f(x)=6lnx+h(x)
(1)求f(x)在x=3处的切线斜率;
(2)若f(x)在区间(m,m+)上是单调函数,求实数m的取值范围;
(3)若对任意k∈[-1,1],函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,求c的取值范围
(1)0;(2)实数m的取值范围为;(3)c的取值范围
【解析】
试题分析:(1)首先根据导函数的图象可得导函数的解析式,从而求得中的,然后再求的导数,由此可得f(x)在点处的切线斜率 (2),这里并不含参数,可以求出它的单调区间 要使 f(x)在区间(m,m+)上是单调函数,只需(m,m+)在的单调区间内即可,然后通过解不等式即得m的取值范围;
(3)函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,则恒成立 分离参数得,在恒成立,又因为k∈[-1,1],所以
然后利用导数求的最大值,再解不等式即可求得c的取值范围
试题解析:(1)
又的图象过点(0,-8),(4,0),所以,
于是,
故,
∴f(x)在点处的切线斜率为 3分
(2)由,列表如下:
x |
(0,1) |
1 |
(1, 3) |
3 |
(3,+∞) |
+ |
0 |
- |
0 |
+ |
|
f(x) |
单调递增 |
极大值 |
单调递减 |
极小值 |
单调递增 |
所以f(x)的单调递增区间为(0,1)和(3,+∞),f(x)的单调递减区间为(1,3)
因为是单调函数,
故实数m的取值范围为 8分
(3)由题意知:恒成立
在恒成立
恒成立 9分
令
令则
内递减,
时,在时在内递增,
所以当
即,又内递增
12分
恒成立,
14分
考点:导数与不等式
科目:高中数学 来源:必修一教案数学苏教版 苏教版 题型:044
求函数解析式:
(1)已知一次函数f(x)满足f(0)=5,图象过点(-2,1),求f(x);
(2)已知二次函数g(x)满足g(1)=1,g(-1)=5,图象过原点,求g(x);
(3)已知二次函数h(x)与x轴的两交点为(-2,0),(3,0),且h(0)=-3,求h(x);
(4)已知二次函数F(x),其图象的顶点是(-1,2),且经过原点,求F(x).
查看答案和解析>>
科目:高中数学 来源:河北省三河一中2012届高三第二次月考数学理科试题 题型:044
已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数y=(x)的图象如图,f(x)=6lnx+h(x).
(1)求函数f(x)在x=3处的切线斜率;
(2)若函数y=-x,x∈(0,6]的图像总在函数y=f(x)图象的上方,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届江西省南昌市高三上学期第一次月考理科数学试卷(解析版) 题型:解答题
已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数的图象如图,f(x)=6lnx+h(x).
①求f(x)在x=3处的切线斜率;
②若f(x)在区间(m,m+)上是单调函数,求实数m的取值范围;
③若对任意k∈[-1,1],函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013届浙江省高二下学期第一次统练理科数学试卷(解析版) 题型:解答题
已知二次函数h(x)=ax2+bx+c(c>0),其导函数y=h′(x)的图象如下,且f(x)=ln x-h(x).
(1)求函数f(x)在x=1处的切线斜率;
(2)若函数f(x)在上是单调函数,求实数m的取值范围;
(3)若函数y=2x-lnx(x∈[1,4])的图象总在函数y=f(x)的图象的上方,求c的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com