精英家教网 > 高中数学 > 题目详情

【题目】把半椭圆)与圆弧)合成的曲线称作“曲圆”,其中的右焦点,如图所示,分别是“曲圆”与轴、轴的交点,已知,过点且倾斜角为的直线交“曲圆”于两点(轴的上方).

1)求半椭圆和圆弧的方程;

2)当点分别在第一、第三象限时,求△的周长的取值范围;

3)若射线绕点顺时针旋转交“曲圆”于点,请用表示两点的坐标,并求△的面积的最小值.

【答案】1;(2;(3

【解析】

1)易得,,,即可得到结果;

2)得到周长为,根据范围解得即可;

3)设,,可知,

,代入椭圆方程解出,,再根据公式求面积即可

1)易得,,

椭圆

圆弧

2)由(1)可知,

分别在第一、第三象限,,

此时为腰长为2的等腰三角形,,

的周长

,

3)设,

由题意得,

,

①当时,将点坐标代入中得,,解得(舍),可得

,

,,

②当,

综上, 的面积的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,设直线轴的交点为,过点且斜率为的直线与椭圆交于两点,为线段的中点.

(1)若直线的倾斜角为,求的值;

(2)设直线交直线于点,证明:直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若,求函数的单调区间;

(2)若,则当时,函数的图象是否总在直线上方?请写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量,其中,则下列判断错误的是( )

A.向量轴正方向的夹角为定值(与之值无关)

B.的最大值为

C.夹角的最大值为

D.的最大值为l

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十七世纪,法国数学家费马提出猜想;“当整数时,关于的方程没有正整数解”,经历三百多年,1995年英国数学家安德鲁怀尔斯给出了证明,使它终成费马大定理,则下面命题正确的是(

①对任意正整数,关于的方程都没有正整数解;

②当整数时,关于的方程至少存在一组正整数解;

③当正整数时,关于的方程至少存在一组正整数解;

④若关于的方程至少存在一组正整数解,则正整数

A.①②/span>B.①③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆(),定点,其中为正实数.

(1)当时,判断直线与圆的位置关系;

(2)当时,若对于圆上任意一点均有成立(为坐标原点),求实数的值;

(3)当时,对于线段上的任意一点,若在圆上都存在不同的两点,使得点是线段的中点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋中装有9个大小形状完全相同的球,球的编号分别为1,2,…,9,随机摸出两个球,则两个球的编号之和大于9的概率是______(结果用分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司对4月份员工的奖金情况统计如下:

奖金(单位:元)

8000

5000

4000

2000

1000

800

700

600

500

员工(单位:人)

1

2

4

6

12

8

20

5

2

根据上表中的数据,可得该公司4月份员工的奖金:①中位数为800元;②平均数为1373元;③众数为700元,其中判断正确的个数为( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面分别为的中点.

(Ⅰ)证明:平面平面

(Ⅱ)若,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案