精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,四点,恰有三点在椭圆上.

1)求的方程;

2)设为椭圆在左、右焦点,是椭圆在第一象限上一点,满足,求面积的最大值.

【答案】121

【解析】

(1)根据椭圆的对称性,得到三点在椭圆上,把代入椭圆,即可求出椭圆方程;

(2)可得点坐标,设出直线方程,代入椭圆方程,利用韦达定理及弦长公式可得,由点到直线的距离公式可得三角形的高,由三角形面积公式及基本不等式可得结论.

1)∵椭圆

四点

结合椭圆几何特征,可得在椭圆上,

所以,解得

∴椭圆的方程为

2)由椭圆的方程可知:

,即

,解得,则点坐标为

设直线的方程为

整理得,由

当且仅当,即时,取等号,

面积的最大值1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某制药厂准备投入适当的广告费,对产品进行宣传,在一年内,预计年销量Q(万件)与广告费x(万元)之间的函数关系为Qx≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需后期再投入32万元,若每件售价为年平均每件投入的150%”年平均每件所占广告费的50%”之和(注:投入包括年固定投入后期再投入).

1)试将年利润w万元表示为年广告费x万元的函数,并判断当年广告费投入100万元时,企业亏损还是盈利?

2)当年广告费投入多少万元时,企业年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出如下四个命题:①若为假命题,则均为假命题;②命题,则的否命题为,则;③命题的否定是;④在中,的充要条件.其中正确的命题是(

A.②③④B.①③④C.①②④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线为焦点,且过点

1)求双曲线与其渐近线的方程

2)若斜率为1的直线与双曲线相交于两点,且为坐标原点),求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的值域;

2)当时,求的最小值

3)是否存在实数,同时满足下列条件:① ;② 的定义域为时,其值域为.若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某动物园要为刚入园的小动物建造一间两面靠墙的三角形露天活动室,地面形状如图所示,已知已有两面墙的夹角为,墙的长度为米,(已有两面墙的可利用长度足够大),记.

(1)若,求的周长(结果精确到0.01米);

(2)为了使小动物能健康成长,要求所建的三角形露天活动室面积,的面积尽可能大,当为何值时,该活动室面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面为等边三角形,分别为棱的中点.

1)求证:平面

2)求平面与平面所成锐二面角的余弦值;

3)在棱上是否存在点,使得平面?若存在,求的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年国庆黄金周影市火爆依旧,《我和我的祖国》、《中国机长》、《攀登者》票房不断刷新,为了解我校高三2300名学生的观影情况,随机调查了100名在校学生,其中看过《我和我的祖国》或《中国机长》的学生共有80位,看过《中国机长》的学生共有60位,看过《中国机长》且看过《我和我的祖国》的学生共有50位,则该校高三年级看过《我和我的祖国》的学生人数的估计值为( )

A.1150B.1380C.1610D.1860

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“类函数”.

(1)已知函数,试判断是否为“类函数”?并说明理由;

(2)设是定义在上的“类函数”,求是实数的最小值;

(3)若 为其定义域上的“类函数”,求实数的取值范围.

查看答案和解析>>

同步练习册答案