精英家教网 > 高中数学 > 题目详情

【题目】已知边长为4的正三角形ABC的边ABAC上分别有两点DEDE//BCDE=3,现将△ABC沿DE折成直二面角ADEB,在空间中取一点F使得ADBF为平行四边形,连接ACFC得六面体ABCEDFGBC边上动点.

1)若EG//平面ACF,求CG的长;

2)若GBC中点,求二面角GAED的平面角的余弦值.

【答案】11;(2.

【解析】

1)由平行四边形可得AF//BD,BD//平面ACF,再由平面ACF∩平面BCED=CH,可得BD//CH,同理EG//CH,BD//EG,即可求解;

(2)取DE中点O,连接AO,OG(取BC中点G),以O为坐标原点,分别以OG,OE,OA所在直线为x,y,z轴建立空间直角坐标系,求得平面AEG的法向量,取平面AED的一个法向量为,进而利用数量积求解即可.

1)设平面ACF与平面BCED的交线为CHH在直线DE上),

ADBF为平行四边形,∴AF//BD,

AF平面ACF,BD平面ACF,

BD//平面ACF,

BD平面BCED, 平面ACF∩平面BCED=CH,∴BD//CH,

EG//平面ACF,EG平面BCED,平面ACF∩平面BCED=CH,∴EG//CH,

BD//EG,

是平行四边形,

BG=DE=3,CG=BC-BG=1

2)取DE中点O,连接AO,OG(取BC中点G),则AODE,OGDE,

又平面ADE⊥平面BCED,且平面ADEBCED=DE,∴AO⊥平面BCED,

O为坐标原点,分别以OG,OE,OA所在直线为x,y,z轴建立空间直角坐标系,如图所示,

E0,,0),A0,0,),G,0,0,

,,

设平面AEG的法向量为,

,取z=1,得,

取平面AED的一个法向量为,

,

∴二面角GAED的平面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆O及其内接等腰三角形绕底边上的高所在直线旋转而成,如图2.已知圆O的半径为,设,圆锥的侧面积为S圆锥的侧面积R-底面圆半径,I-母线长))

1)求S关于的函数关系式;

2)为了达到最佳观赏效果,要求圆锥的侧面积S最大.S取得最大值时腰的长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人所得与下三人等。问各得几何?”其意思是:“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得之和与丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差数列。问五人各得多少钱?”(“钱”是古代的一种重量单位)。这个问题中,戊所得为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于元集合,若元集合满足,且则称是集合的一种等和划分”(算是同一种划分)试确定集合共有多少种等和划分?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a为常数,函数fx)=xlnx1)﹣ax2,给出以下结论:(1fx)存在唯一零点与a的取值无关;(2)若a=e2,则fx)存在唯一零点;(3)若ae2,则fx)存在两个零点.其中正确的个数是( )

A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点是,左右顶点是,离心率是,过的直线与椭圆交于两点PQ(不是左、右顶点),且的周长是

直线交于点M.

(1)求椭圆的方程;

(2)(ⅰ)求证直线交点M在一条定直线l上;

(ⅱ)N是定直线l上的一点,且PN平行于x轴,证明:是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点是棱上的一个动点,平面交棱于点.下列命题正确的为_______________.

①存在点,使得//平面

②对于任意的点,平面平面

③存在点,使得平面

④对于任意的点,四棱锥的体积均不变.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列1,2,1,2,2,1,2,2,2,1,2,2,2,2,1,2,,其相邻的两个1被2隔开,第对1之间有个2,则数列的前209项的和为( )

A. 279 B. 289 C. 399 D. 409

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C:x2y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.

(1)求证:曲线C都表示圆,并且这些圆心都在同一条直线上;

(2)证明:曲线C过定点;

(3)若曲线Cx轴相切,k的值.

查看答案和解析>>

同步练习册答案