精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为

1)求曲线C的普通方程;

2)直线l的参数方程为,(t为参数),直线lx轴交于点F,与曲线C的交点为AB,当取最小值时,求直线l的直角坐标方程.

【答案】12

【解析】

1)由二倍角公式的逆运用化简已知方程,再由极坐标方程与普通方程间的关系化为普通方程;

2)由直线l的参数方程可知其与x轴交于点,即为抛物线C的焦点,从而由参数方程中t的几何意义可知为直线l的参数方程与抛物线C的普通方程联立之后的方程的两根,即可表示,进而由三角函数求最值,得其答案.

1)由题意得

,得

,即曲线C的普通方程为

2)由题意可知,直线lx轴交于点,即为抛物线C的焦点,

将直线l的参数方程,代入C的普通方程中,

整理得

由题意得,根据根与系数的关系得,

(当且仅当时,等号成立),

取得最小值时,直线l的直角坐标方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD是正方形,AE平面ABCDPDAEPDAD2EA2GFH分别为BEBPPC的中点.

1)求证:平面ABE平面GHF

2)求直线GH与平面PBC所成的角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)若曲线上一点的极坐标为,且过点,求的普通方程和的直角坐标方程;

(2)设点的交点为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个排球队在采用胜制排球决赛中相遇,已知每局比赛中甲获胜的概率是.

1)求比赛进行了局就结束的概率;

2)若第局甲胜,两队又继续进行了局结束比赛,求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为

1)求曲线C的普通方程;

2)直线l的参数方程为,(t为参数),直线lx轴交于点F,与曲线C的交点为AB,当取最小值时,求直线l的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若对任意恰有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,直线为曲线的切线(为自然对数的底数).

(1)求实数的值;

(2)用表示中的最小值,设函数,若函数

为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的图象为曲线

)求曲线上任意一点处的切线的斜率的取值范围;

)若曲线上存在两点处的切线互相垂直,求其中一条切线与曲线的切点的横坐标的取值范围;

)试问:是否存在一条直线与曲线C同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥中,的中点,是等边三角形,平面平面.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案