精英家教网 > 高中数学 > 题目详情

【题目】在正四面体S﹣ABC中,若P为棱SC的中点,那么异面直线PB与SA所成的角的余弦值等于( )
A.
B.
C.
D.

【答案】A
【解析】解:取AC中点O,连结PO,BO,设正四面体S﹣ABC的棱长为2,
则PO∥SA,且PO= SA=1,BO=BP= =
∴∠BPO是异面直线PB与SA所成的角,
cos∠BPO= = =
∴异面直线PB与SA所成的角的余弦值为
故选:A.

【考点精析】利用异面直线及其所成的角对题目进行判断即可得到答案,需要熟知异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 ,曲线y=f(x)在点(2,f(2))处的切线方程为7x﹣4y﹣12=0.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且 =﹣
(1)求角B的大小;
(2)若a+c=2,SABC= ,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线x2=4y的焦点F作直线AB,CD与抛物线交于A,B,C,D四点,且AB⊥CD,则 + 的最大值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正数数列{xn}满足x1= ,xn+1= ,n∈N*
(1)求x2 , x4 , x6
(2)猜想数列{x2n}的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的方程为x2+(y﹣2)2=1,直线l的方程为x﹣2y=0,点P在直线l上,过P点作圆M的切线PA,PB,切点为A,B.
(1)若∠APB=60°,试求点P的坐标;
(2)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当 时,求直线CD的方程;
(3)求证:经过A,P,M三点的圆必过定点,并求出所有定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ex , g(x)=x+1.
(1)证明:f(x)≥g(x);
(2)求y=f(x),y=g(x)与x=﹣1所围成的封闭图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=esinx+e﹣sinx(x∈R),则下列说法不正确的是( )
A.f(x)为R上偶函数
B.π为f(x)的一个周期
C.π为f(x)的一个极小值点
D.f(x)在区间 上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为角A,B,C所对的边,角C是钝角,且sinB= . (Ⅰ)求角C的值;
(Ⅱ)若b=2,△ABC的面积为 ,求c的值.

查看答案和解析>>

同步练习册答案