精英家教网 > 高中数学 > 题目详情

【题目】下列不等式的解集是空集的是(
A.x2﹣x+1>0
B.﹣2x2+x+1>0
C.2x﹣x2>5
D.x2+x>2

【答案】C
【解析】解:根据题意,依次分析选项, 对于A,x2﹣x+1=(x﹣ 2+ ,则x2﹣x+1>0恒成立,其解集为R,A不符合题意,
对于B,﹣2x2+x+1>02x2﹣x﹣1<0,有△>0,其解集不是空集,B不符合题意,
对于C,2x﹣x2>5x2﹣2x+5<0,其△=﹣16<0,其解集为,符合题意,
对于D,x2+x>2x2+x﹣2>0,有△>0,其解集不是空集,D不符合题意,
故选C.
【考点精析】本题主要考查了解一元二次不等式的相关知识点,需要掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1). (Ⅰ)设 ,求方程f(x)=2的根;
(Ⅱ)设 ,函数g(x)=f(x)﹣2,已知b>3时存在x0∈(﹣1,0)使得g(x0)<0.若g(x)=0有且只有一个零点,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a2=3,a3+a5=2
(1)求{an}的通项公式;
(2)求{an}的前n项和Sn及Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=asinxbcosx(a、b为常数,a≠0,x∈R)在x= 处取得最小值,则函数y=f( x)是(
A.偶函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点 对称
C.奇函数且它的图象关于点 对称
D.奇函数且它的图象关于点(π,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)是定义域为R的偶函数,且在(0,+∞)上单调递减,则( )
A.f(﹣π)>f(﹣1)>f(
B.f(﹣1)>f(﹣π)>f(
C.f(﹣π)>f( )>f(﹣1)
D.f(﹣1)>f( )>f(﹣π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)已知x< ,求函数y=4x﹣2+ 的最大值;
(2)已知x>0,y>0且 =1,求x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn . (Ⅰ)求an及Sn
(Ⅱ)令bn= (n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)对任意的x∈(﹣ )满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是(
A. f(﹣ )<f(﹣
B. f( )<f(
C.f(0)>2f(
D.f(0)> f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}及等差数列{bn},若a1=3, (n≥2),a1=b2 , 2a3+a2=b4
(1)证明数列{an﹣2}为等比数列;
(2)求数列{an}及数列{bn}的通项公式;
(3)设数列{anbn}的前n项和为Tn , 求Tn

查看答案和解析>>

同步练习册答案