【题目】如图,在多面体中,四边形为直角梯形,,,四边形为矩形,平面平面,,,点为的中点,点为的中点.
(1)求证:;
(2)求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知定点,横坐标不小于的动点在轴上的射影为,若.
(1)求动点的轨迹的方程;
(2)若点不在直线上,并且直线与曲线相交于两个不同点.问是否存在常数使得当的值变化时,直线斜率之和是一个定值.若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 ,,已知有三个互不相等的零点,且.
(Ⅰ)若.(ⅰ)讨论的单调区间;(ⅱ)对任意的,都有成立,求的取值范围;
(Ⅱ)若且,设函数在,处的切线分别为直线,,是直线,的交点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求椭圆的极坐标方程和直线的直角坐标方程;
(2)若点的极坐标为,直线与椭圆相交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一大批产品,其验收方案如下,先做第一次检验:从中任取8件,经检验都为优质品时接受这批产品,若优质品数小于6件则拒收;否则做第二次检验,其做法是从产品中再另任取3件,逐一检验,若检测过程中检测出非优质品就要终止检验且拒收这批产品,否则继续产品检测,且仅当这3件产品都为优质品时接受这批产品.若产品的优质品率为0.9.且各件产品是否为优质品相互独立.
(1)记为第一次检验的8件产品中优质品的件数,求的期望与方差;
(2)求这批产品被接受的概率;
(3)若第一次检测费用固定为1000元,第二次检测费用为每件产品100元,记为整个产品检验过程中的总费用,求的分布列.
(附:,,,,)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com