精英家教网 > 高中数学 > 题目详情
3.已知P是直线3x+4y+8=0的动点,PA、PB是圆(x-1)2+(y-1)2=1的两条切线,A、B是切点,C是圆心,则四边形PACB面积的最小值为2$\sqrt{2}$.

分析 由圆的方程为求得圆心C,半径r,由“若四边形面积最小,则圆心与点P的距离最小时,即距离为圆心到直线的距离时,切线长PA,PB最小”,最后将四边形转化为两个直角三角形面积求解.

解答 解:∵圆的方程为:(x-1)2+(y-1)2=1,∴圆心C(1,1),半径r=1.
根据题意,若四边形面积最小,当圆心与点P的距离最小时,即距离为圆心到直线的距离时,
切线长PA,PB最小.
∵圆心到直线的距离为d=$\frac{|3+4+8|}{5}$=3,∴PA=PB=2$\sqrt{2}$.
故四边形PACB面积的最小值为 2S△PAC=2×$\frac{1}{2}$×PA×r=2$\sqrt{2}$.
故答案为:2$\sqrt{2}$.

点评 本题的考点是直线与圆的位置关系,主要涉及了构造四边形及其面积的求法,解题的关键是“若四边形面积最小,则圆心与点P的距离最小时,即距离为圆心到直线的距离时,切线长PA,PB最小”属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设f(α)=$\frac{sin(π-α)cos(2π-α)}{cos(-α-π)tan(π+α)}$ 其中α是第三象限角.
(1)化简f(α);
(2)若cos{$α-\frac{3π}{2}$)=$\frac{1}{5}$,求f(α);
(3)若α=-1860°,求f(α).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示,a∥b∥c,直线AB与a、b、c分别相交于A、E、B,直线CD与a、b、c分别相交于C、E、D,AE=EB,则有(  )
A.AE=CEB.BE=DEC.CE=DED.CE>DE

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=2sin($\frac{π}{3}x+1$)的最小正周期是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=x2+2xf′(1)-6,则f′(1)等于(  )
A.4B.-2C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若x>1,则函数y=$\frac{{{x^2}+x+2}}{x-1}$的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,圆O的半径为2,等腰△ABC的底边的两端点B,C在圆O上,AB与圆O交于点D,AD=2,圆O的切线DE交AC于E点.
(I)求证:DE⊥AC;
(Ⅱ)若∠A=30°,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若y=15sin[$\frac{π}{6}$(x+1)]表示一个振动,则这个振动的初相是$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知角α的终边过点P(-3,4),则cosα=(  )
A.$-\frac{3}{5}$B.$-\frac{3}{4}$C.$\frac{4}{5}$D.$-\frac{4}{3}$

查看答案和解析>>

同步练习册答案