精英家教网 > 高中数学 > 题目详情
10.已知集合A={x|y=log2(5-2x),x∈N},B={x|3x(x-2)≤1},则A∩B等于(  )
A.{x|0≤x≤2}B.{x|1≤x<2}C.{0,1}D.{0,1,2}

分析 先求出集合A、B,再计算A∩B.

解答 解:集合A={x|y=log2(5-2x),x∈N}
={x|5-2x>0,x∈N}
={x|x<$\frac{5}{2}$,x∈N}={0,1,2},
B={x|3x(x-2)≤1}
={x|x(x-2)≤0}
={x|0≤x≤2},
所以A∩B={x|0≤x≤2,x∈N}={0,1,2}.
故选:D.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.如图,⊙O中,弦AD∥BC,DA=DC,∠BCO=15°,则∠AOC等于(  )
A.120°B.130°C.140°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,∠B=$\frac{π}{2}$,AB=BC=2,P为AB边上一动点,PD∥BC交AC于点D,现将△PDA沿PD翻折至△PDA′,使平面PDA′⊥平面PBCD,当棱锥A′-PBCD的体积最大时,PA的长为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的中位数为(  )
A.10B.11C.12D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,a、b、c分别为A、B、C的对边,如果a、b、c成等差数列,B=60°,△ABC的面积为$\frac{\sqrt{3}}{2}$,那么b=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义城为(-1,1)的函数f(x)的导函数为f′(x)=5+cosx,且f(0)=0.如果f(1-x)+f(1-x2)<0,则实数x的取值范围为(  )
A.(0,1)B.(1,$\sqrt{2}$)C.(0,2)D.(0,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题p:x2-3x+2=0,命题q:x=2,则p是q的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA+(2c+a)cosB=0.
(1)求角B的大小;
(2)若b=4,△ABC的面积为$\sqrt{3}$,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\frac{{{2^{x+1}}+1}}{{{2^x}+1}}$-xcosx(-π≤x≤π)的最大值M与最小值m的关系是(  )
A.M+m=4B.M+m=3C.M-m=4D.M-m=3

查看答案和解析>>

同步练习册答案