精英家教网 > 高中数学 > 题目详情

如图C,D是以AB为直径的圆上的两点,,F是AB上的一点,且,将圆沿AB折起,使点C在平面ABD的射影E在BD上,已知

(1)求证:AD平面BCE
(2)求证:AD//平面CEF;
(3)求三棱锥A-CFD的体积.

(1)参考解析;(2)参考解析;(3)

解析试题分析:(1)因为由于AB是圆的直径,所以AD⊥BD,又因为点C在平面ABD的射影E在BD上,所以CE⊥平面ADB.又因为平面ADB.所以AD⊥CE.又因为.所以AD⊥平面BCE.
(2)因为.有直角三角形的勾股定理可得.在直角三角形BCE中,又.所以.又BD=3,.所以可得.所以AD∥FE,又因为平面CEF, 平面CE.所以AD//平面CEF.
(3)通过转换顶点三棱锥A-CFD的体积.因为.所以.
试题解析:(1)证明:依题意: 
平面   ∴ 
    ∴平面.           4分
(2)证明:中, ∴
中, ∴
 . ∴
在平面外,在平面内,
平面.           8分
(3)解:由(2)知,且
平面
.       12分
考点:1.线面垂直.2.线面平行.3.几何体的体积公式.4.图形的翻折问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥PABCD中,平面PAD⊥平面ABCDABDC,△PAD是等边三角形,已知AD=4,BD=4AB=2CD=8.

(1)设MPC上的一点,证明:平面MBD⊥平面PAD
(2)当M点位于线段PC什么位置时,PA∥平面MBD?
(3)求四棱锥PABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角梯形ABCD中,ABCDADABCD=2AB=4,ADECD的中点,将△BCE沿BE折起,使得CODE,其中垂足O在线段DE内.

(1)求证:CO⊥平面ABED
(2)问∠CEO(记为θ)多大时,三棱锥CAOE的体积最大,最大值为多少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,储油灌的表面积为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.

⑴试用半径表示出储油灌的容积,并写出的范围.
⑵当圆柱高与半径的比为多少时,储油灌的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,AB=2BF=4,C,E分别是AB,AF的中点(如下左图).将此三角形沿CE对折,使平面AEC⊥平面BCEF(如下右图),已知D是AB的中点.

(1)求证:CD∥平面AEF;
(2)求证:平面AEF⊥平面ABF;
(3)求三棱锥C-AEF的体积,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,圆锥的轴截面为等腰直角为底面圆周上一点.

(1)若的中点为,
求证:平面
(2)如果,,求此圆锥的全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于,四边形ABCD是正方形.

(Ⅰ)求证
(Ⅱ)求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点.

(1)求证:BC1∥平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B;
(3)若底面ABC为边长为2的正三角形,BB1= ,求三棱锥B1-A1DC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个三棱柱的底面是边长3的正三角形,侧棱垂直于底面,它的三视图如图所示,.
(1)请画出它的直观图;(2)求这个三棱柱的表面积和体积.

查看答案和解析>>

同步练习册答案