分析 根据向量数量积公式和向量的夹角公式计算即可.
解答 解:∵$\overrightarrow{a}$,$\overrightarrow{b}$均为单位向量,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,
∴($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$=$\overrightarrow{a}•\overrightarrow{b}$-|$\overrightarrow{b}$|2=1×1×(-$\frac{1}{2}$)-1=-$\frac{3}{2}$,
|$\overrightarrow{a}$-$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2-2$\overrightarrow{a}•\overrightarrow{b}$+|$\overrightarrow{b}$|2=1-2×1×1×(-$\frac{1}{2}$)+1=3,
∴|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$,
设$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$的夹角为θ,
则cosθ=$\frac{(\overrightarrow{a}-\overrightarrow{b})•\overrightarrow{b}}{|\overrightarrow{b}|•|\overrightarrow{a}-\overrightarrow{b}|}$=$\frac{-\frac{3}{2}}{1×\sqrt{3}}$=-$\frac{\sqrt{3}}{2}$,
∵0°≤θ≤180°,
∴θ=150°,
故答案为:150°
点评 解决此类问题的关键是熟练掌握平面向量数量积的运算性质与公式,以及向量的求模公式的应用,此题属于基础题,主要细心的运算即可得到全分.
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{10}}{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | -3 | C. | $\frac{4}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -3 | B. | 0 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com