精英家教网 > 高中数学 > 题目详情
18.若$\overrightarrow{a}$,$\overrightarrow{b}$均为单位向量,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,则$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$的夹角等于150°.

分析 根据向量数量积公式和向量的夹角公式计算即可.

解答 解:∵$\overrightarrow{a}$,$\overrightarrow{b}$均为单位向量,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,
∴($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$=$\overrightarrow{a}•\overrightarrow{b}$-|$\overrightarrow{b}$|2=1×1×(-$\frac{1}{2}$)-1=-$\frac{3}{2}$,
|$\overrightarrow{a}$-$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2-2$\overrightarrow{a}•\overrightarrow{b}$+|$\overrightarrow{b}$|2=1-2×1×1×(-$\frac{1}{2}$)+1=3,
∴|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$,
设$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$的夹角为θ,
则cosθ=$\frac{(\overrightarrow{a}-\overrightarrow{b})•\overrightarrow{b}}{|\overrightarrow{b}|•|\overrightarrow{a}-\overrightarrow{b}|}$=$\frac{-\frac{3}{2}}{1×\sqrt{3}}$=-$\frac{\sqrt{3}}{2}$,
∵0°≤θ≤180°,
∴θ=150°,
故答案为:150°

点评 解决此类问题的关键是熟练掌握平面向量数量积的运算性质与公式,以及向量的求模公式的应用,此题属于基础题,主要细心的运算即可得到全分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$(a>b>0)的一条渐近线方程为y=$\frac{1}{2}$x,则其离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{10}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数z满足(1+3i)z=i-3,则z等于(  )
A.iB.$\frac{4-3i}{5}$C.-iD.$\frac{5}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为$ρ=\sqrt{2}$,直线l的参数方程为$\left\{\begin{array}{l}x=2+tcosα\\ y=2+tsinα\end{array}\right.$(t为参数).
(1)点P在曲线C上,Q在直线l上,若$α=\frac{3}{4}π$,求线段|PQ|的最小值;
(2)设直线l与曲线C有两个不同的交点,求直线l的斜率k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在R上,且最小正周期为π的函数是(  )
A.y=sin|x|B.y=cos|x|C.y=|sinx|D.y=|cos2x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设$\overrightarrow{AP}=x\overrightarrow{AD}$,$\overrightarrow{PB}•\overrightarrow{PC}=y$,则得到函数y=f(x).
(Ⅰ)求f(1)的值;
(Ⅱ)对于任意a∈(0,+∞),求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若角α的始边是x轴正半轴,终边过点P(4,-3),则cosα的值是(  )
A.4B.-3C.$\frac{4}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=3x+4x-8的零点在区间[k,k+1](k∈Z)上,则函数g(x)=x-kex的极大值为(  )
A.-3B.0C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+b2-c2=ab,c=3,sinA+sinB=2$\sqrt{6}$sinAsinB,则△ABC的周长为 3+3$\sqrt{2}$.

查看答案和解析>>

同步练习册答案