精英家教网 > 高中数学 > 题目详情

已知为等比数列,其中a1=1,且a2,a3+a5,a4成等差数列.
(1)求数列的通项公式:
(2)设,求数列{}的前n项和Tn

(1);(Ⅱ).

解析试题分析:(1)设在等比数列中,公比为,
根据因为成等差数列.建立的方程.
(Ⅱ)由(I)可得.从其结构上不难看出,应用“错位相减法”求和.
此类问题的解答,要特别注意和式中的“项数”.
试题解析:(1)设在等比数列中,公比为,
因为成等差数列.
所以                            2分

解得                                        4分
所以                                   6分
(Ⅱ).


②           8分
①—②,得


                                              10分
所以                                        12分
考点:等差数列的性质,等比数列的通项公式,“错位相减法”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

知数列{an}是首项为,公比为的等比数列,设bn+15log3ant,常数t∈N*.
(1)求证:{bn}为等差数列;
(2)设数列{cn}满足cnanbn,是否存在正整数k,使ckck+1ck+2按某种次序排列后成等比数列?若存在,求kt的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}满足a1>0,an+1=2-|an|,n∈N*
(1)若a1,a2,a3成等比数列,求a1的值;
(2)是否存在a1,使数列{an}为等差数列?若存在,求出所有这样的a1;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足是数列 的前项和.
(1)若数列为等差数列.
①求数列的通项
②若数列满足,数列满足,试比较数列 前项和项和的大小;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}满足an+1=2an+n2-4n+1.
(1)若a1=3,求证:存在(a,b,c为常数),使数列{an+f(n)}是等比数列,并求出数列{an}的通项公式;
(2)若an是一个等差数列{bn}的前n项和,求首项a1的值与数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列是公比为正数的等比数列,.
(1)求数列的通项公式;
(2)设数列是首项为,公差为的等差数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公差不为0的等差数列的前n项和为,且成等比数列.
(1)求数列的通项公式;
(2)设,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列中,公差,其前项和为,且满足:
(Ⅰ)求数列的通项公式;
(Ⅱ)令),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的首项,且满足
(1)设,求证:数列是等差数列,并求数列的通项公式;
(2)设,求数列的前n项和

查看答案和解析>>

同步练习册答案