【题目】(2014·江苏卷)如图,在平面直角坐标系xOy中,F1,F2分别是椭圆 (a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.
(1)若点C的坐标为,且BF2=,求椭圆的方程;
(2)若F1C⊥AB,求椭圆离心率e的值.
【答案】(1)(2)
【解析】试题分析:(1)根据题意,求得 ,代入点,求得,即可求解椭圆的方程;
(2)由点在直线上,得到的方程,联立方程组,求解点的坐标,再根据,列出方程求得,即可得到椭圆的离心率.
试题解析:
解 设椭圆的焦距为2c,则F1(-c,0),F2(c,0).
(1)因为B(0,b),所以BF2==a.
又BF2=,故a=.
因为点C在椭圆上,所以+=1.
解得b2=1.故所求椭圆的方程为+y2=1.
(2)因为B(0,b),F2(c,0)在直线AB上,
所以直线AB的方程为+=1.
解方程组得
所以点A的坐标为.
又AC垂直于x轴,由椭圆的对称性,可得点C的坐标为.
因为直线F1C的斜率为=,直线AB的斜率为-,且F1C⊥AB,
所以·=-1.
又b2=a2-c2,整理得a2=5c2.故e2=.因此e=.
科目:高中数学 来源: 题型:
【题目】甲、乙两支球队进行总决赛,比赛采用七场四胜制,即若有一队先胜四场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.
(I)求总决赛中获得门票总收入恰好为300万元的概率;
(II)设总决赛中获得门票总收入为X,求X的均值E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆E的方程为 (a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足BM=2MA,直线OM的斜率为.
(1)求E的离心率e;
(2)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次摸取奖票的活动中,已知中奖的概率为,若票仓中有足够多的票则下列说法正确的是
A. 若只摸取一张票,则中奖的概率为
B. 若只摸取一张票,则中奖的概率为
C. 若100个人按先后顺序每人摸取1张票则一定有2人中奖
D. 若100个人按先后顺序每人摸取1张票,则第一个摸票的人中奖概率最大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图.
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合计 | M | 1 |
(1)求出表中M,p及图中a的值;
(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,且椭圆过点,离心率;点在椭圆上,延长与椭圆交于点,点是中点.
(1)求椭圆C的方程;
(2)若是坐标原点,记与的面积之和为,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com