精英家教网 > 高中数学 > 题目详情

如图,F1,F2分别是椭圆=1(a>b>0)的左右焦点,M为椭圆上一点,MF2垂直于x轴,且OM与椭圆长轴和短轴端点的连线AB平行,

(Ⅰ)求椭圆的离心率;

(Ⅱ)若G为椭圆上不同于长轴端点任一点,求∠F1GF2取值范围;

(Ⅲ)过F2且与OM垂直的直线交椭圆于P,Q.若=20,求椭圆的方程.

答案:
解析:

  解:(Ⅰ)由已知M(c, )

  解:(Ⅰ)由已知M(c,)

  ∵KOM=KAB  ∴  ∴b=c,e=

  (Ⅱ)设GF1=m,GF2=n

  cosθ=-1≥-1=0

  当且仅当m=n时,(cosθ)min=0  ∴θ∈(0,]

  (Ⅲ)5y2cy-2c2=0

  |y1-y2|=c

  |F1F2||y1-y2|=×2c×

  ∴c2=b2=25,a2=50  ∴椭圆的方程为=1


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,F1,F2分别为椭圆
x2
a2
+
y2
b2
=1
的左、右焦点,点P在椭圆上,△POF2是面积为
3
的正三角形,则b2的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1、F2分别为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦点,椭圆的右准线l与x轴交于A点,若F1(-1,0),且
AF1
=2
AF2

(Ⅰ)求椭圆的方程;
(Ⅱ)过F1、F2作互相垂直的两直线分别与椭圆交于P、Q、M、N四点,求四边形PMQN面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1,F2分别为双曲线
x2
a2
-
y2
b2
=1
的左右焦点,点P在双曲线上,若△POF2是面积为1的正三角形,则b2的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1、F2分别为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦点,椭圆的右准线l与x轴交于A点,若F1(-1,0),且
AF1
=2
AF2

(I)求椭圆的方程;
(II)过F1、F2作互相垂直的两直线分别与椭圆交于P、Q、M、N四点,若直线MN的倾斜角为
π
4
,求四边形PMQN的面积.

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二下学期一调考试文科数学 题型:填空题

如图,F1,F2分别为椭圆的左、右焦点,点P在椭圆上,△POF2是面积

的正三角形,则的值是     

 

查看答案和解析>>

同步练习册答案