精英家教网 > 高中数学 > 题目详情
18.用下列方法给定数列{an},a0=$\frac{1}{2}$,ak=ak-1+$\frac{1}{n}$a2k-1(k=1,2,3…),证明:1-$\frac{1}{n}$<an<1.

分析 通过对ak=ak-1+$\frac{1}{n}$a2k-1(k=1,2,3…)两边同时取倒数、裂项可知$\frac{1}{{a}_{k}}$=$\frac{1}{{a}_{k-1}}$-$\frac{1}{n+{a}_{k-1}}$,放缩可知$\frac{1}{{a}_{k-1}}$-$\frac{1}{{a}_{k}}$<$\frac{1}{n}$、$\frac{1}{{a}_{k-1}}$-$\frac{1}{{a}_{k}}$>$\frac{1}{n+1}$,进而并项相加即得结论.

解答 证明:∵ak-ak-1=$\frac{1}{n}$a2k-1>0(k=1,2,3…),
∴数列{an}是一个单调递增数列,
∵ak=ak-1+$\frac{1}{n}$a2k-1(k=1,2,3…),
∴$\frac{1}{{a}_{k}}$=$\frac{n}{{a}_{k-1}(n+{a}_{k-1})}$=$\frac{1}{{a}_{k-1}}$-$\frac{1}{n+{a}_{k-1}}$,
即$\frac{1}{{a}_{k-1}}$-$\frac{1}{{a}_{k}}$=$\frac{1}{n+{a}_{k-1}}$<$\frac{1}{n}$,
∴$\frac{1}{{a}_{0}}$-$\frac{1}{{a}_{1}}$<$\frac{1}{n}$,$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$<$\frac{1}{n}$,$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$<$\frac{1}{n}$,…,$\frac{1}{{a}_{n-1}}$-$\frac{1}{{a}_{n}}$<$\frac{1}{n}$,
累加得:$\frac{1}{{a}_{0}}$-$\frac{1}{{a}_{n}}$<1,
∴$\frac{1}{{a}_{n}}$>$\frac{1}{{a}_{0}}$-1=2-1=1,即an<1;
∵ak=ak-1+$\frac{1}{n}$a2k-1(k=1,2,3…),
∴$\frac{1}{{a}_{k}}$=$\frac{n}{{a}_{k-1}(n+{a}_{k-1})}$=$\frac{1}{{a}_{k-1}}$-$\frac{1}{n+{a}_{k-1}}$,
即$\frac{1}{{a}_{k-1}}$-$\frac{1}{{a}_{k}}$=$\frac{1}{n+{a}_{k-1}}$>$\frac{1}{n+1}$,
∴$\frac{1}{{a}_{0}}$-$\frac{1}{{a}_{1}}$>$\frac{1}{n+1}$,$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$>$\frac{1}{n+1}$,$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$>$\frac{1}{n+1}$,…,$\frac{1}{{a}_{n-1}}$-$\frac{1}{{a}_{n}}$>$\frac{1}{n+1}$,
累加得:$\frac{1}{{a}_{0}}$-$\frac{1}{{a}_{n}}$>$\frac{n}{n+1}$,
∴$\frac{1}{{a}_{n}}$<$\frac{1}{{a}_{0}}$-$\frac{n}{n+1}$=2-$\frac{n}{n+1}$=$\frac{n+2}{n+1}$,
即an>$\frac{n+1}{n+2}$=1-$\frac{1}{n+2}$>1-$\frac{1}{n}$;
综上所述,1-$\frac{1}{n}$<an<1.

点评 本题是一道数列与不等式的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在对数式b=log(a-2)(5-a)中,实数a的取值范围是(  )
A.(3,4)B.(2,5)C.(2,3)∪(3,5)D.(-∞,2)∪(5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若集合A={2,-1,x2-x+1}和B={2y,-4,x+4}及C={-1,7},且C=A∩B,则x=3,y=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.比较下列各组数的大小.
(1)sin(cos$\frac{3π}{8}$),sin(sin$\frac{3π}{8}$);
(2)cos$\frac{3}{2}$,sin$\frac{1}{10}$,-cos$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若椭圆$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>0,b1>0)和椭圆$\frac{{x}^{2}}{{{a}_{2}}^{2}}$+$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1(a2>0,b2>0)满足$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$,则称这两个椭圆相似.
(Ⅰ)求经过点M(2,3),且与椭圆E1:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1相似的椭圆E2的方程;
(Ⅱ)设点P(8,0),A,B是椭圆E2上关于x轴对称的任意两个不同的点,连结PB交椭圆E2于另一点C,证明:直线AC与x轴相交于定点,并求出此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知定义在R上的奇函数f(x)满足f(x+1)=-$\frac{1}{f(x)}$,当0<x<$\frac{1}{2}$时.f(x)=4x,则f(-$\frac{11}{4}$)=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出下列命题:
(1)线性约束条件是关于x,y的一次不等式;
(2)线性目标函数一定是一次解析式;
(3)线性规划问题就是求线性目标函数在线性条件下的最大值和最小值问题;
(4)线性规划问题的最优解一定是可行解.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某市2005年国民生产总值为20亿元,计划在今后的10年内,平均每年增长8%,试问:到2015年时,该市的国民生产总值将达到20×1.0810亿元(用代数式表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)是二次函数,且图象过点(0,2),f(1)=0,f(3)=14,则函数f(x)的解析式为f(x)=3x2-5x+2.

查看答案和解析>>

同步练习册答案