【题目】集合A={x| ≤0,x∈R},B={x||x﹣1|<2,x∈R}.
(1)求A,B;
(2)求B∩(UA).
【答案】
(1)解:A={x| ≤0,x∈R}
={x|(x+2)(x﹣2)≤0,且x﹣2≠0}
={x|﹣2≤x<2},
B={x||x﹣1|<2,x∈R}
={x|﹣2<x﹣1<2}
={x|﹣1<x<3}
(2)解:UA={x|x<﹣2或x≥2},
∴B∩(UA)={x|2≤x<3}
【解析】化简集合A、B,根据补集与交集的定义计算即可.
【考点精析】根据题目的已知条件,利用集合的表示方法-特定字母法和交、并、补集的混合运算的相关知识可以得到问题的答案,需要掌握①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合;求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ﹣ .
(1)判断f(x)的奇偶性;
(2)判断f(x)的单调性,并用定义证明;
(3)解不等式f(f(x))+f( )<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是关于x的方程f(x)﹣g(x)=0的一个解,求t的值;
(2)当0<a<1且t=﹣1时,解不等式f(x)≤g(x);
(3)若函数F(x)=af(x)+tx2﹣2t+1在区间(﹣1,2]上有零点,求t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设x,y,a∈R* , 且当x+2y=1时, + 的最小值为6 ,则当 + =1时,3x+ay的最小值是( )
A.6
B.6
C.12
D.12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),且当x≠2时其导函数f′(x)满足(x﹣2)f′(x)>0,若2<a<4则( )
A.f(2a)<f(3)<f(log2a)
B.f(log2a)<f(3)<f(2a)
C.f(3)<f(log2a)<f(2a)
D.f(log2a)<f(2a)<f(3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设关于x的方程x2+px﹣12=0和x2+qx+r=0的解集分别是A,B,且A≠B.A∪B={﹣3,2,4},A∩B={﹣3}.求p,q,r的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设复数z=a+i(i是虚数单位,a∈R,a>0),且|z|= .
(Ⅰ)求复数z;
(Ⅱ)在复平面内,若复数+(m∈R)对应的点在第四象限,求实数m取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com