精英家教网 > 高中数学 > 题目详情

【题目】已知方程表示的曲线为的图象,对于函数有如下结论:①上单调递减;②函数至少存在一个零点;③的最大值为;④若函数图象关于原点对称,则由方程所确定;则正确命题序号为( )

A.①③B.②③C.①④D.②④

【答案】C

【解析】

分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给命题的真假性.

1)当时,,此时不存在图象;

2)当时,,此时为实轴为轴的双曲线一部分;

3)当时,,此时为实轴为轴的双曲线一部分;

4)当时,,此时为圆心在原点,半径为1的圆的一部分;

画出的图象,

由图象可得:

对于①,上单调递减,所以①正确;

对于②,函数的图象没有交点,即没有零点,所以②错误;

对于③,由函数图象的对称性可知③错误;

对于④,函数图象关于原点对称,则中用代替,用代替,可得,所以④正确.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地举行水上运动会,如图,岸边有两点,,小船从点以千米/小时的速度沿方向匀速直线行驶,同一时刻运动员出发,经过小时与小船相遇.(水流速度忽略不计)

1)若,运动员从处出发游泳匀速直线追赶,为保证在1小时内(含1小时)能与小船相遇,试求运动员游泳速度的最小值;

2)若运动员先从处沿射线方向在岸边跑步匀速行进小时后,再游泳匀速直线追赶小船.已知运动员在岸边跑步的速度为4千米小时,在水中游泳的速度为2千米小时,试求小船在能与运动员相遇的条件下的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,点分别为椭圆与坐标轴的交点,且.轴上定点的直线与椭圆交于两点,点为线段的中点.

1)求椭圆的方程;

2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,下顶点为,椭圆的离心率是的面积是.

1)求椭圆的标准方程.

2)直线与椭圆交于两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线和⊙,过抛物线C上一点)做两条直线与⊙相切于两点,分别交抛物线于两点.

1)当的角平分线垂直轴时,求直线的斜率;

2)若直线轴上的截距为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是( )

A. 2012年至2016年我国新闻出版业和数字出版业营收均逐年增加

B. 2016年我国数字出版业营收超过2012年我国数字出版业营收的2倍

C. 2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍

D. 2016年我国数字出版营收占新闻出版营收的比例未超过三分之一

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地方政府召开全面展开新旧动能转换重大工程动员大会,动员各方力量,迅速全面展开新旧动能转换重大工程.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前、后生产的大量产品中各抽取了200件作为样本,检测一项质量指标值.若该项质量指标值落在内的产品视为合格品,否则为不合格品.如图所示的是设备改造前样本的频率分布直方图.

1)若设备改造后样本的该项质量指标值服从正态分布,求改造后样本中不合格品的件数;

2)完成下面2×2列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量标值与设备改造有关.

0

设备改造前

设备改造后

合计

合格品件数

不合格品件数

合计

附参考公式和数据:

,则

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为.

(1)求实数的值;

(2)若有两个极值点,求的取值范围并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是是参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,其倾斜角为

)证明直线恒过定点,并写出直线的参数方程;

)在()的条件下,若直线与曲线交于两点,求的值.

查看答案和解析>>

同步练习册答案