精英家教网 > 高中数学 > 题目详情
9.如图,几何体ABCDEF中,四边形ABEF为矩形,ABCD为梯形,平面ABEF⊥平面ABCD,AB∥CD,AB=4,AF=AD=CD=2,AD⊥BD,O为AB的中点.
(1)证明:AD⊥平面BDE;
(2)在线段DE上是否存在点N,使得ON∥平面ADF?说明理由;
(3)求点C到平面BDF的距离.

分析 (1)证明BE⊥平面ABCD,可得BE⊥AD,利用AD⊥BD,即可证明AD⊥平面BDE;
(2)取DE中点记作N,设DF的中点为N,连接AM,MN,证明MNOA为平行四边形,即可说明ON∥平面ADF;
(3)利用等体积,即可求点C到平面BDF的距离.

解答 (1)证明:∵平面ABEF⊥平面ABCD,四边形ABEF为矩形,
∴BE⊥平面ABCD,
∴BE⊥AD,
∵AD⊥BD,BD∩BE=B,
∴AD⊥平面BDE;
(2)解:取DE中点记作N,设DF的中点为N,连接AM,MN
则MN平行且等于$\frac{1}{2}$CD,
又AO平行且等于$\frac{1}{2}$CD,则MN平行且等于AO,
∴MNOA为平行四边形,
∴ON∥AM,
又AM?平面DAF,ON?平面DAF,
∴ON∥平面DAF;
(3)解:△BFD中,BD=2$\sqrt{3}$,DF=2$\sqrt{2}$,BF=2$\sqrt{5}$,
∴BD2+DF2=BF2
∴BD⊥FD,
∴S△BDF=$\frac{1}{2}×2\sqrt{3}×2\sqrt{2}$=2$\sqrt{6}$,
设点C到平面BDF的距离为h.
∵S△BDC=$\frac{1}{2}×2×2×sin120°$=$\sqrt{3}$,
∴$\frac{1}{3}×\sqrt{3}×2$=$\frac{1}{3}×2\sqrt{6}$h,
∴h=$\frac{\sqrt{2}}{2}$,即点C到平面BDF的距离为$\frac{\sqrt{2}}{2}$.

点评 本题是中档题,考查空间想象能力,逻辑思维能力,计算能力,考查棱柱、棱锥、棱台的体积,直线与平面平行的性质,平面与平面垂直的判定,常考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数y=f(x),f′(1)=$\frac{\sqrt{3}}{6}$,则函数y=f(2x-1)在x=1处的切线的倾斜角为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{1}{2}$sin$\frac{1}{2}$x的最小正周期是4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)和g(x)的图象在[a,b]上是连续不断的,且f(a)<g(a),f(b)>g(b),试证明:在(a,b)内至少存在一点x0,使f(x0)=g(x0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某化肥厂生产甲、乙两种肥料,生产一车皮甲种肥料需要磷酸盐4吨、硝酸盐18吨;生产一车皮乙种肥料需要磷酸盐1吨、硝酸盐15吨.已知生产一车皮甲种肥料产生的利润是10万元,生产一车皮乙种肥料产生的利润是5万元.现库存磷酸盐10吨、硝酸盐66吨.如果该厂合理安排生产计划,则可以获得的最大利润是30万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在棱长为1的正方体ABCD-A1B1C1D1中,A1C与平面ABCD所成的角为(  )
A.$\frac{π}{6}$B.arctan$\frac{\sqrt{3}}{3}$C.$\frac{π}{3}$D.arctan$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在底面是菱形的四棱锥P-ABCD中∠ABC=60°,PA=AC=1,PB=PD=$\sqrt{2}$,若E是侧棱PD的中点
(Ⅰ)证明:PA⊥平面ABCD
(Ⅱ)求直线CE与底面ABCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,正三棱柱ABC-A1B1C1的所有棱长都为4,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求直线AB1与平面BCC1B1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知正四棱锥V-ABCD中,AC与BD交于点M,VM是棱锥的高,若AC=2$\sqrt{2}$,VC=$\sqrt{3}$.
(1)求正四棱锥V-ABCD的体积.
(2)求正四棱锥V-ABCD的表面积.

查看答案和解析>>

同步练习册答案