【题目】下列说法中错误的是( )
A. 先把高二年级的2000名学生编号为1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为,然后抽取编号为,,的学生,这样的抽样方法是系统抽样法;
B. 独立性检验中,越大,则越有把握说两个变量有关;
C. 若两个随机变量的线性相关性越强,则相关系数的值越接近于1;
D. 若一组数据1、a、3的平均数是2,则该组数据的方差是.
科目:高中数学 来源: 题型:
【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )
A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件
B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高
C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致
D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数,单位是,其中表示候鸟每分钟耗氧量的单位数,表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:,,)
(1)若,候鸟每分钟的耗氧量为个单位时,它的飞行速度是多少?
(2)若,候鸟停下休息时,它每分钟的耗氧量为多少个单位?
(3)若雄鸟的飞行速度为,雌鸟的飞行速度为,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数
(1)若函数在区间上存在零点,求实数的取值范围;
(2)是否存在常数,当时,的值域为区间,且区间的长度为(视区间的长度为),如果存在,求出的值;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线在第一象限内的点到焦点F的距离为.
(1)求抛物线的方程;
(2)若直线与抛物线C相交于A,B两点,与圆相交于D,E两点,O为坐标原点,,试问:是否存在实数a,使得|DE|的长为定值?若存在,求出a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程为,直线,直线 .以极点为原点,极轴为轴的正半轴建立平面直角坐标系.
(1)求直线,的直角坐标方程以及曲线的参数方程;
(2)已知直线与曲线交于两点,直线与曲线交于两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆的右准线方程,离心率,左、右顶点分别为A,B,右焦点为F,点P在椭圆上,且位于x轴上方.
(Ⅰ)设直线的斜率为,直线的斜率为,求的最小值;
(Ⅱ)点Q在右准线l上,且,直线交x负半轴于点M,若,求点P坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com