【题目】已知函数 ,且 .
(1)试求 的值;
(2)用定义证明函数 在 上单调递增;
(3)设关于 的方程 的两根为 ,试问是否存在实数 ,使得不等式 对任意的 及 恒成立?若存在,求出 的取值范围;若不存在说明理由.
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A、B两个不同点.
(1)求椭圆的标准方程以及m的取值范围;
(2)求证直线MA,MB与x轴始终围成一个等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,a为正常数.
(1)若f(x)=lnx+φ(x),且 ,求函数f(x)的单调增区间;
(2)若g(x)=|lnx|+φ(x),且对任意x1 , x2∈(0,2],x1≠x2 , 都有 ,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知 是上、下底边长分别为2和6,高为 的等腰梯形,将它沿对称轴 折叠,使二面角 为直二面角.
(1)证明: ;
(2)求二面角 的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 与 是定义在同一区间 上的两个函数,若函数 ( 为函数 的导函数),在 上有且只有两个不同的零点,则称 是 在 上的“关联函数”,若 ,是 在 上的“关联函数”,则实数 的取值范围是( ).
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为梯形,AD∥BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分别是AD,PB的中点.
(Ⅰ)求证:PD∥平面OCM;
(Ⅱ)若AP与平面PBD所成的角为60°,求线段PB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15人,则该班的学生人数是( )
A.45
B.50
C.55
D.60
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F,点M(2,m)为其上一点,且|MF|=4.
(1)求p与m的值;
(2)如图,过点F作直线l交抛物线于A、B两点,求直线OA、OB的斜率之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点. (Ⅰ)证明:平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:B1F∥平面A1BE;
(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com