精英家教网 > 高中数学 > 题目详情
已知下列四下命题:
①函数f(x)=2x满足:对任意x1x2∈R,有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]

②函数f(x)=log2(x+
1+x2
),g(x)=1+
2
2x-1
均是奇函数;
③函数f(x)=e-2-ex切线斜率的最大值是-2;
④函数f(x)=x
1
2
-(
1
4
)x的在区间(
1
4
1
3
)
上有零点.
其中正确命题的序号是
 
考点:命题的真假判断与应用
专题:函数的性质及应用
分析:①,函数f(x)=2x中,足:令x1=0,x2=2,可得f(
x1+x2
2
)=f(1)=2;
1
2
[f(x1)+f(x2)]=
1
2
[f(0)+f(2)]=
5
2
,可判断①;
②,利用奇偶函的概念可判断函数f(x)=log2(x+
1+x2
),g(x)=1+
2
2x-1
均是奇函数从而可判断②;
③,利用导数的几何意义可求得函数f(x)=e-2-ex切线斜率,从而可判断③;
④,利用零点存在定理可判断函数f(x)=x
1
2
-(
1
4
)
x
在区间(
1
4
1
3
)上无零点.
解答: 解:对于①,函数f(x)=2x,令x1=0,x2=2,则
x1+x2
2
=1,显然f(
x1+x2
2
)=f(1)=2;
1
2
[f(x1)+f(x2)]=
1
2
[f(0)+f(2)]=
5
2
,f(
x1+x2
2
)<
1
2
[f(x1)+f(x2)],故①错误;
对于②,函数f(x)=log2(x+
1+x2
)
的定义域为R,且f(-x)+f(x)=log2(-x+
1+(-x)2
)
+log2(x+
1+x2
)
=log21=0,
所以,f(-x)=-f(x),即f(x)=log2(x+
1+x2
)
为奇函数;
同理可得,g(-x)+g(x)=0,即g(x)=1+
2
2x-1
是奇函数,故②正确;
对于③,函数f(x)=e-2-ex的导函数f′(x)=-ex<0,
函数f(x)=e-2-ex切线斜率无最大值,故③错误
对于④,函数f(x)=x
1
2
-(
1
4
)
x
,f′(x)=
1
2
x
-(
1
4
)x
ln
1
4
=
1
2
x
+(
1
4
)
x
ln4>0,
所以,f(x)=x
1
2
-(
1
4
)
x
为R上的增函数,
又f(
1
4
)=(
1
4
)
1
2
-(
1
4
)
1
4
<0,f(
1
3
)=(
1
3
)
1
2
-(
1
4
)
1
3
=(
1
27
)
1
6
-(
1
16
)
1
2
<0,
所以,f(x)=x
1
2
-(
1
4
)
x
在区间(
1
4
1
3
)上无零点,故④错误.
故答案为:②.
点评:本题考查命题的真假判断与应用,着重考查函数的“凹凸”性、奇偶性,考查导数的几何意义、函数的零点等,考查分析与运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(n-x-xlnx)ln(x+m)(m,n为常数,且m>0,n>0),且y=f(x)在点(1,f(1))处的切线方程为y=-2xln2+2ln2.
(1)求m,n的值;
(2)证明:对任意x>0,曲线g(x)=(1+e-2)x-f(x)的图象在第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点与抛物线y2=16x的焦点重合,且双曲线
x2
a2
-
y2
b2
=1上有一点到一个焦点的距离比到另一焦点的距离大4,则(  )
A、b=4
B、b=2
3
C、b=4
3
D、b=2
15

查看答案和解析>>

科目:高中数学 来源: 题型:

若点G为△AOB的中线OM的中点,过点G作直线分别交OA,OB与点平P,Q.设
OP
OA
=m,
OQ
OB
=n,则
1
m
+
1
n
的值为(  )
A、4
B、1
C、
1
4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为一次函数,且满足4f(1-x)-2f(x-1)=3x+18,求函数f(x)在[-1,1]上的最大值,并比较f(2011)与f(2012)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①若x>0,且x≠1则lgx+
1
lgx
≥2;
②设x,y∈R,命题“若xy=0,则x2+y2=0”的否命题是真命题;
③函数y=cos(2x-
π
3
)的一条对称轴是直线x=
5
12
π;
④若定义在R上的函数y=f(x)是奇函数,则对定义域内的任意x必有f(2x+1)+f(-2x-1)=0.
其中,所有正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,cosx),
b
=(6sinx+cosx,7sinx-2cosx).设函数f(x)=
a
b

(Ⅰ)求函数f(x)的最大值单递增区间;
(Ⅱ)在角A为锐角的△ABC中,角A、B、C的对边分别为a、b、c,f(A)=6,且△ABC的面积为3,b+c=2+3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论:
①若命题p:?x0∈R,tanx0=1;命题q:?x∈R,x2-x+1>0.则命题“p∧¬q”是假命题;
②命题“若x2-3x+2=0则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”;
③在线性回归分析中,残差的平方和越小,说明模型的拟合效果越好.
④设单因素范围为[0,1],对它利用分数法进行优选,如果只能做2次试验,则精度为
1
3

其中结论正确的个数为(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l垂直于直线2x-3y+5=0,则直线l的一个法向量
n
=
 

查看答案和解析>>

同步练习册答案