精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+4在(-∞,0)上是增函数,在(0,1)上是减函数.
(Ⅰ)求b的值;
(Ⅱ)当x≥0时,曲线y=f(x)总在直线y=a2x-4上方,求a的取值范围.
分析:(Ⅰ)由题意得:f(x)在(-∞,0)上是增函数,在(0,1)上是减函数,所以当x=0时,f(x)有极大值,即f′(x)=0,即b=0.
(Ⅱ)因为f(x)在(-∞,0)上是增函数,在(0,1)上是减函数,所以-
2
3
a≥1
,即a≤-
3
2
.因为曲线y=f(x)在直线y=a2x-4的上方,设g(x)=(x3+ax2+4)-(a2x-4),
所以在x∈[0,+∝)时,g(x)≥0恒成立.用导数求函数g(x)的最小值为g(-a),保证其大于0即可.
解答:解:(Ⅰ)∵f(x)=x3+ax2+bx+4,
∴f′(x)=3x2+2ax+b.
∵f(x)在(-∞,0)上是增函数,在(0,1)上是减函数,
∴当x=0时,f(x)有极大值,即f′(x)=0,
∴b=0.
(Ⅱ)f′(x)=3x2+2ax=x(3x+2a),
∵f(x)在(-∞,0)上是增函数,在(0,1)上是减函数,
-
2
3
a≥1
,即a≤-
3
2

∵曲线y=f(x)在直线y=a2x-4的上方,
设g(x)=(x3+ax2+4)-(a2x-4),
∴在x∈[0,+∝)时,g(x)≥0恒成立.
∵g′(x)=3x2+2ax-a2=(3x-a)(x+a),
令g′(x)=0,两个根为-a,
a
3
,且
a
3
<0<-a

x (0,-a) -a (-a,+∞)
g′(x) - 0 +
g(x) 单调递减 极小值 单调递增
∴当x=-a时,g(x)有最小值g(-a).
令g(-a)=(-a3+a3+4)-(-a3-4)>0,
∴a3>-8,由a≤-
3
2

∴-2<a≤ -
3
2
点评:解决此类问题的关键是将不等式在某个区间上恒成立问题转化为函数在该区间上的最值问题,再利用导数求函数的最值,这也是高考考查的热点之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案