精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga
x-3x+3
,g(x)=f(x)+x3+2
(1)若g(t)=3求g(-t)的值
(2)若f(x)的定义域为[α,β),值域为(logaa(β-1),logaa(α-1)]
①求证:a>3
②若函数f(x)为[α,β)上的减函数,求a的取值范围.
分析:(1)由题意先求出函数的定义域和f(-x),判断出函数f(x)是奇函数,再代入求出g(t)+g(-t)=4,由g(t)=3求g(-t)=1;
(2)①根据(1)求出的函数f(x)的定义域和真数大于零,求出α的范围;
②先用分离常数法判断真数对应的函数在定义域上的单调性,再由对数函数的单调性和“同增异减”得出底数a的范围,根据值域列出关于α与β的方程,再转化为对应二次方程的两个不同的根,由根的分布列出关于a的不等式组,进行求解注意a的范围;
解答:解:(1)由题意得
x-3
x+3
>0,得x>3或x<-3;(1分)
∵f(-x)=loga
-x-3
-x+3
=loga
x+3
x-3
=-loga
x-3
x+3
=f(-x)
∴f(x)为奇函数;(3分)
∵g(x)=f(x)+x3+2,g(t)=3
∴g(t)+g(-t)=f(t)+t3+2+f(-t)+(-t)3+2=4
∴g(t)+g(-t)=4.故g(-t)=1(5分)
(2)由(1)知f(x)的定义域(-∞,-3)∪(3,+∞)
①∵a(α-1)>0且a>0,则α>1,
又∵已知f(x)的定义域为[α,β),
∴β>α>3.则α>3.(8分)
②∵函数y=
x-3
x+3
=1-
6
x+3
在其定义域[α,β)上为增函数,
又∵f(x)在[α,β)上为减函数,∴0<a<1;(9分)
∵f(x)的定义域为[α,β),值域为(logaa(β-1),logaa(α-1)]
log
α-3
α+3
a
=logaa(α-1)
log
β-3
β+3
a
=logaa(β-1),
说明α,β 是方程
x-3
x+3
=a(x-1)
的两个相异实数根,且β>α>3,
即方程ax2+(2a-1)x+3-3a=0在区间(3,+∞)内有两相异实根.
设h(x)=ax2++(2a-1)x+3-3a,
则有
△=(2a-1)2-4a(3-3a)>0
-
2a-1
2a
>3
h(3)>0
,解
a<
2-
3
4
或a>
2+
3
4
a<
1
8
a>0

又∵0<a<1,
综上解得:0<a<
2-
3
4

∴满足条件的a的取值范围是(0,
2-
3
4
).(14分)
点评:本题是有关函数性质的综合题,利用函数的奇偶性求值;利用复合函数的单调性求出参数的范围和解决值域问题,考查了转化思想和二次函数对应方程的根的分布问题,是难度较大的题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案